Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 16: 1201015, 2023.
Article in English | MEDLINE | ID: mdl-37614699

ABSTRACT

Introduction: Mitochondrial dysfunction is observed in Alzheimer's disease (AD). Altered mitochondrial respiration, cytochrome oxidase (COX) Vmax, and mitophagy are observed in human subjects and animal models of AD. Models derived from induced pluripotent stem cells (iPSCs) may not recapitulate these phenotypes after reprogramming from differentiated adult cells. Methods: We examined mitochondrial function across iPSC derived models including cerebral organoids, forebrain neurons, and astrocytes. iPSCs were reprogrammed from fibroblasts either from the University of Kansas Alzheimer's Disease Research Center (KU ADRC) cohort or purchased from WiCell. A total of four non-demented and four sporadic AD iPSC lines were examined. Models were subjected to mitochondrial respiration analysis using Seahorse XF technology, spectrophotometric cytochrome oxidase (COX) Vmax assays, fluorescent assays to determine mitochondrial mass, mitochondrial membrane potential, calcium, mitochondrial dynamics, and mitophagy levels. AD pathological hallmarks were also measured. Results: iPSC derived neurons and cerebral organoids showed reduced COX Vmax in AD subjects with more profound defects in the female cohort. These results were not observed in astrocytes. iPSC derived neurons and astrocytes from AD subjects had reduced mitochondrial respiration parameters with increased glycolytic flux. iPSC derived neurons and astrocytes from AD subjects showed sex dependent effects on mitochondrial membrane potential, mitochondrial superoxide production, and mitochondrial calcium. iPSC derived neurons from AD subjects had reduced mitochondrial localization in lysosomes with sex dependent effects on mitochondrial mass, while iPSC derived astrocytes from female AD subjects had increased mitochondrial localization to lysosomes. Both iPSC derived neurons and astrocytes from AD subjects showed altered mitochondrial dynamics. iPSC derived neurons had increased secreted Aß, and sex dependent effects on total APP protein expression. iPSC derived astrocytes showed sex dependent changes in GFAP expression in AD derived cells. Conclusion: Overall, iPSC derived models from AD subjects show mitochondrial phenotypes and AD pathological hallmarks in a cell type and sex dependent manner. These results highlight the importance of sex as a biological variable in cell culture studies.

2.
Methods Mol Biol ; 2066: 217-234, 2020.
Article in English | MEDLINE | ID: mdl-31512220

ABSTRACT

Induced pluripotent stem (iPS) cells are important tools for studying differentiation and for use in patient-specific disease modeling. We present a detailed method for the reprogramming of primary human fibroblasts to induced pluripotent stem cells using Sendai virus. These procedures allow for the efficient generation of multiple high-quality feeder-independent iPS cell lines for a given human fibroblast line. The iPS cell lines generated by this protocol can be used in a variety of differentiation and gene expression studies, as well as in genetic manipulations.


Subject(s)
Cell Culture Techniques/methods , Induced Pluripotent Stem Cells/cytology , Primary Cell Culture/methods , Sendai virus/genetics , Cell Differentiation/genetics , Cellular Reprogramming/genetics , Fibroblasts/cytology , Humans , Induced Pluripotent Stem Cells/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...