Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
Mol Microbiol ; 61(3): 826-37, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16803587

ABSTRACT

Mycobacteria are characterized by an unusual cell wall that controls nutrient and small hydrophilic compound permeability. Porin-like proteins are necessary to ensure the transport of molecules into the cell. Here, we investigated the pore-forming properties of OmpATb, a porin from Mycobacterium tuberculosis, in lipid bilayers. Multi-channel experiments showed an asymmetric behaviour with channel closures at negative critical voltages (Vc) and a strong decrease in Vc at acidic pH. Single-channel experiments gave conductance values of about 850 +/- 80 pS in 1 M KCl and displayed a weak cationic selectivity in 4-8 pH range. The production and characterization of a series of truncated OmpATb proteins, showed that the central domain (OmpATb73-220) was sufficient to induce the ion channel properties of the native protein in lipid bilayers, i.e. asymmetric insertion, pH-dependent voltage closure, cationic selectivity and similar conductance values in 1 M KCl. Western blot analysis suggests that the presence of OmpATb is only restricted to certain pathogenic species. Therefore, the propensity of channels of native OmpATb to close at low pH may represent an intrinsic property allowing pathogenic mycobacteria to adapt and survive to mildly acidic conditions, such as those encountered within the macrophage phagosome.


Subject(s)
Bacterial Proteins/metabolism , Mycobacterium tuberculosis/physiology , Porins/metabolism , Bacterial Proteins/genetics , Biophysics/methods , Electrophysiology/methods , Hydrogen-Ion Concentration , Lipid Bilayers , Mycobacterium tuberculosis/pathogenicity , Peptide Fragments/metabolism , Porins/genetics , Protein Structure, Tertiary , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
3.
Mol Microbiol ; 46(1): 191-201, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12366842

ABSTRACT

The functions of OmpATb, the product of the ompATb gene of Mycobacterium tuberculosis and a putative porin, were investigated by studying a mutant with a targeted deletion of the gene, and by observing expression of the gene in wild-type M. tuberculosis H37Rv by real-time polymerase chain reaction (PCR) and immunoblotting. The loss of ompATb had no effect on growth under normal conditions, but caused a major reduction in ability to grow at reduced pH. The gene was substantially upregulated in wild-type bacteria exposed to these conditions. The mutant was impaired in its ability to grow in macrophages and in normal mice, although it was as virulent as the wild type in mice that lack T cells. Deletion of the ompATb gene reduced permeability to several small water-soluble substances. This was particularly evident at pH 5.5; at this pH, uptake of serine was minimal, suggesting that, at this pH, OmpATb might be the only functioning porin. These data indicate that OmpATb has two functions: as a pore-forming protein with properties of a porin, and in enabling M. tuberculosis to respond to reduced environmental pH. It is not known whether this second function is related to the porin-like activity at low pH or involves a completely separate role for OmpATB. The involvement with pH is likely to contribute to the ability of M. tuberculosis to overcome host defence mechanisms and grow in a mammalian host.


Subject(s)
Bacterial Proteins , Mycobacterium tuberculosis/metabolism , Porins/metabolism , Animals , Cells, Cultured , Gene Deletion , Gene Expression Regulation, Bacterial , Heat-Shock Response , Hydrogen-Ion Concentration , Macrophages/microbiology , Mice , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/pathogenicity , Porins/genetics , Recombination, Genetic , Tuberculosis, Pulmonary/microbiology
4.
Microbiology (Reading) ; 145 ( Pt 6): 1359-1367, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10411262

ABSTRACT

Mycobacteria are known to acquire resistance to the antituberculous drug pyrazinamide (PZA) through mutations in the gene encoding pyrazinamidase (PZase), an enzyme that converts PZA into pyrazinoic acid, the presumed active form of PZA against bacteria. Additional mechanisms of resistance to the drug are known to exist but have not been fully investigated. Among these is the non-uptake of the pro-drug, a possibility investigated in the present study. The uptake mechanism of PZA, a requisite step for the activation of the pro-drug, was studied in Mycobacterium tuberculosis. The incorporation of [14C]PZA by the bacilli was followed in both neutral and acidic environments since PZA activity is known to be optimal at acidic pH. By using a protonophore (carbonyl cyanide m-chlorophenylhydrazone; CCCP), valinomycin, arsenate and low temperature, it was shown that an ATP-dependent transport system is involved in the uptake of PZA. Whilst the structurally analogous compound nicotinamide inhibited the transport system of PZA, other structurally related compounds such as pyrazinoic acid, isoniazid and cytosine did not. Acidic conditions were also without effect. Based on diffusion experiments in liposomes, it was found that PZA diffuses rapidly through membrane bilayers, faster than glycerol, whilst the presence of OmpATb, the porin-like protein of M. tuberculosis, in proteoliposomes slightly increased the diffusion of the drug. This finding may explain why the cell wall mycolate hydrophobic layer does not represent the limiting step in the diffusion of PZA, as judged from comparative experiments using a M. tuberculosis strain and its isogenic mutant elaborating 40% less covalently linked mycolates. PZase activity, and PZA uptake and susceptibility in different mycobacterial species were compared. M. tuberculosis, a naturally PZA-susceptible species, was the only species that exhibited both PZase activity and PZA uptake; no such correlation was observed with the four naturally resistant species examined. Mycobacterium smegmatis possessed a functional PZase but did not take up PZA; the reverse was true for the PZase-negative strain of Mycobacterium avium used, with PZA uptake comparable to that of M. tuberculosis. Mycobacterium bovis BCG and Mycobacterium kansasii exhibited neither a PZase activity nor PZA uptake. These data clearly demonstrate that one of the mechanisms of resistance to PZA resides in the failure of strains to take up the drug, indicating that susceptibility to PZA in mycobacteria requires both the presence of a functional PZase and a PZA transport system. No correlation was observed between the occurrence and cellular location of PZase and of nicotinamidase in the strains examined, suggesting that one or both amides can be hydrolysed by other mycobacterial amidases.


Subject(s)
Amidohydrolases/metabolism , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Pyrazinamide/pharmacology , Amidohydrolases/genetics , Antitubercular Agents/metabolism , Biological Transport , Diffusion , Drug Resistance, Microbial/physiology , Membranes/metabolism , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/metabolism , Pyrazinamide/metabolism
5.
Microbiology (Reading) ; 143 ( Pt 7): 2267-2276, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9245815

ABSTRACT

The inducible acetamidase of Mycobacterium smegmatis NCTC 8159 is expressed at high levels in the presence of a suitable inducer, such as acetamide. The gene and 1.5 kb of upstream sequence had previously been sequenced. A further 1.4 kb of upstream sequence has now been determined, containing an additional ORF on the opposite strand to the acetamidase gene. This ORF has significant homologies to genes encoding regulatory proteins involved in amidase expression in other organisms. Restriction fragments from the 4 kb region were subcloned into a promoter-probe shuttle vector to locate the approximate region of the acetamidase promoter and investigate the mechanism of regulation. An inducible promoter was found to lie in the 1.4 kb region situated 1.5 kb upstream from the acetamidase coding region. Expression of the acetamidase was studied at the protein and mRNA levels. Using immunoblotting, induction of the enzyme was demonstrated in minimal medium containing succinate plus acetamide, but not in a richer medium (Lemco broth) plus acetamide, confirming that regulation of acetamidase expression is mediated by both positive and negative control elements. After induction by acetamide, an increase above basal level could be detected after 1 h for both protein levels (using ELISA) and mRNA levels (using Northern blot analysis), indicating that control of expression is at the mRNA level. The size of the mRNA transcript detected was approximately 1.2 kb, the size of the acetamidase coding region. Since no promoter was identified immediately upstream of the coding region, this raises the possibility that a larger, primary transcript (possibly polycistronic) is cleaved to produce a stable form encoding the acetamidase protein.


Subject(s)
Amidohydrolases/genetics , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Mycobacterium/genetics , Amino Acid Sequence , Base Sequence , Enzyme Induction/genetics , Molecular Sequence Data , Mycobacterium/enzymology , Plasmids
6.
s.l; s.n; 1985. 2 p.
Non-conventional in English | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1232798

Subject(s)
Leprosy
7.
s.l; s.n; 1984. 7 p. tab, graf.
Non-conventional in English | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1232057

Subject(s)
Leprosy
8.
In. International Leprosy Congress, 12. International Leprosy Congress, 12/Proceedings. New Delhi, s.n, 1984. p.307-309.
Non-conventional in English | LILACS-Express | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1246420
9.
s.l; s.n; 1970. 3 p.
Non-conventional in English | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1232379

Subject(s)
Leprosy
10.
In. Chatterjee, B. R. Leprosy: etiobiology of manifestations treatment and control. s.l, s.n, s.d. p.97-102, ilus.
Monography in English | LILACS-Express | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1246264
SELECTION OF CITATIONS
SEARCH DETAIL
...