Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(31): 13110-13119, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37503562

ABSTRACT

We investigate the effect of low concentrations of iron on the physical properties of SnS van der Waals crystals grown from the melt. By means of scanning tunneling microscopy (STM) and photoemission spectroscopy we study Fe-induced defects and observe an electron doping effect in the band structure of the native p-type SnS semiconductor. Atomically resolved and bias dependent STM data of characteristic defects are compared to ab initio density functional theory simulations of vacancy (VS and VSn), Fe substitutional (FeSn), and Fe interstitial (Feint) defects. While native SnS is dominated by acceptor-like VSn vacancies, our results show that Fe preferentially occupies donor-like interstitial Feint sites in close proximity to VSn defects along the high-symmetry c-axis of SnS. The formation of such well-defined coupled (VSn, Feint) defect pairs leads to local compensation of the acceptor-like character of VSn, which is in line with a reduction of p-type carrier concentrations observed in our Hall transport measurements.

2.
Beilstein J Nanotechnol ; 10: 1401-1411, 2019.
Article in English | MEDLINE | ID: mdl-31431852

ABSTRACT

This study deals with the preparation and characterization of metallic nanoinclusions on the surface of semiconducting Bi2Se3 that could be used for an enhancement of the efficiency of thermoelectric materials. We used Au forming a 1D alloy through diffusion (point nanoinclusion) and Mo forming thermodynamically stable layered MoSe2 nanosheets through the reaction with the Bi2Se3. The Schottky barrier formed by the 1D and 2D nanoinclusions was characterized by means of atomic force microscopy (AFM). We used Kelvin probe force microscopy (KPFM) in ambient atmosphere at the nanoscale and compared the results to those of ultraviolet photoelectron spectroscopy (UPS) in UHV at the macroscale. The existence of the Schottky barrier was demonstrated at +120 meV for the Mo layer and -80 meV for the Au layer reflecting the formation of MoSe2 and Au/Bi2Se3 alloy, respectively. The results of both methods (KPFM and UPS) were in good agreement. We revealed that long-time exposure (tens of seconds) to the electrical field leads to deep oxidation and the formation of perturbations greater than 1 µm in height, which hinder the I-V measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...