Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5577, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956082

ABSTRACT

Recent advances in single-cell immune profiling have enabled the simultaneous measurement of transcriptome and T cell receptor (TCR) sequences, offering great potential for studying immune responses at the cellular level. However, integrating these diverse modalities across datasets is challenging due to their unique data characteristics and technical variations. Here, to address this, we develop the multimodal generative model mvTCR to fuse modality-specific information across transcriptome and TCR into a shared representation. Our analysis demonstrates the added value of multimodal over unimodal approaches to capture antigen specificity. Notably, we use mvTCR to distinguish T cell subpopulations binding to SARS-CoV-2 antigens from bystander cells. Furthermore, when combined with reference mapping approaches, mvTCR can map newly generated datasets to extensive T cell references, facilitating knowledge transfer. In summary, we envision mvTCR to enable a scalable analysis of multimodal immune profiling data and advance our understanding of immune responses.


Subject(s)
COVID-19 , Receptors, Antigen, T-Cell , SARS-CoV-2 , Single-Cell Analysis , Transcriptome , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Single-Cell Analysis/methods , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/immunology , COVID-19/virology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Gene Expression Profiling/methods , Antigens, Viral/immunology , Antigens, Viral/genetics
2.
Nature ; 631(8019): 189-198, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898278

ABSTRACT

The COVID-19 pandemic is an ongoing global health threat, yet our understanding of the dynamics of early cellular responses to this disease remains limited1. Here in our SARS-CoV-2 human challenge study, we used single-cell multi-omics profiling of nasopharyngeal swabs and blood to temporally resolve abortive, transient and sustained infections in seronegative individuals challenged with pre-Alpha SARS-CoV-2. Our analyses revealed rapid changes in cell-type proportions and dozens of highly dynamic cellular response states in epithelial and immune cells associated with specific time points and infection status. We observed that the interferon response in blood preceded the nasopharyngeal response. Moreover, nasopharyngeal immune infiltration occurred early in samples from individuals with only transient infection and later in samples from individuals with sustained infection. High expression of HLA-DQA2 before inoculation was associated with preventing sustained infection. Ciliated cells showed multiple immune responses and were most permissive for viral replication, whereas nasopharyngeal T cells and macrophages were infected non-productively. We resolved 54 T cell states, including acutely activated T cells that clonally expanded while carrying convergent SARS-CoV-2 motifs. Our new computational pipeline Cell2TCR identifies activated antigen-responding T cells based on a gene expression signature and clusters these into clonotype groups and motifs. Overall, our detailed time series data can serve as a Rosetta stone for epithelial and immune cell responses and reveals early dynamic responses associated with protection against infection.


Subject(s)
COVID-19 , Nasopharynx , SARS-CoV-2 , Single-Cell Analysis , T-Lymphocytes , Humans , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Nasopharynx/virology , Nasopharynx/immunology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Interferons/immunology , Interferons/metabolism , Male , Female , Macrophages/immunology , Macrophages/virology , Virus Replication , Epithelial Cells/virology , Epithelial Cells/immunology , Time Factors , Adult
3.
Nat Commun ; 15(1): 4227, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762592

ABSTRACT

Multisystem inflammatory syndrome in children is a post-infectious presentation SARS-CoV-2 associated with expansion of the T cell receptor Vß21.3+ T-cell subgroup. Here we apply muti-single cell omics to compare the inflammatory process in children with acute respiratory COVID-19 and those presenting with non SARS-CoV-2 infections in children. Here we show that in Multi-Inflammatory Syndrome in Children (MIS-C), the natural killer cell and monocyte population demonstrate heightened CD95 (Fas) and Interleuking 18 receptor expression. Additionally, TCR Vß21.3+ CD4+ T-cells exhibit skewed differentiation towards T helper 1, 17 and regulatory T cells, with increased expression of the co-stimulation receptors ICOS, CD28 and interleukin 18 receptor. We observe no functional evidence for NLRP3 inflammasome pathway overactivation, though MIS-C monocytes show elevated active caspase 8. This, coupled with raised IL18 mRNA expression in CD16- NK cells on single cell RNA sequencing analysis, suggests interleukin 18 and CD95 signalling may trigger activation of TCR Vß21.3+ T-cells in MIS-C, driven by increased IL-18 production from activated monocytes and CD16- Natural Killer cells.


Subject(s)
COVID-19 , Interleukin-18 , Killer Cells, Natural , Monocytes , Signal Transduction , Systemic Inflammatory Response Syndrome , fas Receptor , Humans , Interleukin-18/metabolism , Child , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , fas Receptor/metabolism , fas Receptor/genetics , Monocytes/immunology , Monocytes/metabolism , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/metabolism , COVID-19/immunology , COVID-19/virology , COVID-19/metabolism , COVID-19/complications , Inflammasomes/metabolism , Inflammasomes/immunology , SARS-CoV-2/immunology , Adolescent , Male , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Female , Child, Preschool , Single-Cell Analysis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD28 Antigens/metabolism , Lymphocyte Activation/immunology , Receptors, Interleukin-18/metabolism , Receptors, Interleukin-18/genetics , Receptors, Interleukin-18/immunology
4.
Nat Biotechnol ; 42(1): 40-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37055623

ABSTRACT

Assessment of single-cell gene expression (single-cell RNA sequencing) and adaptive immune receptor (AIR) sequencing (scVDJ-seq) has been invaluable in studying lymphocyte biology. Here we introduce Dandelion, a computational pipeline for scVDJ-seq analysis. It enables the application of standard V(D)J analysis workflows to single-cell datasets, delivering improved V(D)J contig annotation and the identification of nonproductive and partially spliced contigs. We devised a strategy to create an AIR feature space that can be used for both differential V(D)J usage analysis and pseudotime trajectory inference. The application of Dandelion improved the alignment of human thymic development trajectories of double-positive T cells to mature single-positive CD4/CD8 T cells, generating predictions of factors regulating lineage commitment. Dandelion analysis of other cell compartments provided insights into the origins of human B1 cells and ILC/NK cell development, illustrating the power of our approach. Dandelion is available at https://www.github.com/zktuong/dandelion .


Subject(s)
Taraxacum , Humans , T-Lymphocytes , Single-Cell Analysis
5.
Cell Rep ; 42(8): 112991, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37590132

ABSTRACT

Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here, we show that individuals 70 years or older (median age 73, range 70-75) who received a primary two-dose schedule with AZD1222 and booster third dose with mRNA vaccine achieve significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared with those younger than 70 (median age 66, range 54-69) at 1 month post booster. Impaired neutralization potency and breadth post third dose in the elderly is associated with circulating "atypical" spike-specific B cells expressing CD11c and FCRL5. However, when considering individuals who received three doses of mRNA vaccine, we did not observe differences in neutralization or enrichment in atypical B cells. This work highlights the finding that AdV and mRNA COVID-19 vaccine formats differentially instruct the memory B cell response.


Subject(s)
COVID-19 , Aged , Humans , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , SARS-CoV-2 , Vaccination
6.
Nature ; 596(7870): 92-96, 2021 08.
Article in English | MEDLINE | ID: mdl-34321664

ABSTRACT

The mammalian brain develops through a complex interplay of spatial cues generated by diffusible morphogens, cell-cell interactions and intrinsic genetic programs that result in probably more than a thousand distinct cell types. A complete understanding of this process requires a systematic characterization of cell states over the entire spatiotemporal range of brain development. The ability of single-cell RNA sequencing and spatial transcriptomics to reveal the molecular heterogeneity of complex tissues has therefore been particularly powerful in the nervous system. Previous studies have explored development in specific brain regions1-8, the whole adult brain9 and even entire embryos10. Here we report a comprehensive single-cell transcriptomic atlas of the embryonic mouse brain between gastrulation and birth. We identified almost eight hundred cellular states that describe a developmental program for the functional elements of the brain and its enclosing membranes, including the early neuroepithelium, region-specific secondary organizers, and both neurogenic and gliogenic progenitors. We also used in situ mRNA sequencing to map the spatial expression patterns of key developmental genes. Integrating the in situ data with our single-cell clusters revealed the precise spatial organization of neural progenitors during the patterning of the nervous system.


Subject(s)
Brain/cytology , Brain/embryology , Single-Cell Analysis , Transcriptome , Animals , Animals, Newborn/genetics , Brain/anatomy & histology , Female , Gastrulation/genetics , Male , Mice , Neural Tube/anatomy & histology , Neural Tube/cytology , Neural Tube/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...