Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(11): 6298-6316, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38682582

ABSTRACT

Senescent cells can influence the function of tissues in which they reside, and their propensity for disease. A portion of adult human pancreatic beta cells express the senescence marker p16, yet it is unclear whether they are in a senescent state, and how this affects insulin secretion. We analyzed single-cell transcriptome datasets of adult human beta cells, and found that p16-positive cells express senescence gene signatures, as well as elevated levels of beta-cell maturation genes, consistent with enhanced functionality. Senescent human beta-like cells in culture undergo chromatin reorganization that leads to activation of enhancers regulating functional maturation genes and acquisition of glucose-stimulated insulin secretion capacity. Strikingly, Interferon-stimulated genes are elevated in senescent human beta cells, but genes encoding senescence-associated secretory phenotype (SASP) cytokines are not. Senescent beta cells in culture and in human tissue show elevated levels of cytoplasmic DNA, contributing to their increased interferon responsiveness. Human beta-cell senescence thus involves chromatin-driven upregulation of a functional-maturation program, and increased responsiveness of interferon-stimulated genes, changes that could increase both insulin secretion and immune reactivity.


Subject(s)
Cellular Senescence , Chromatin Assembly and Disassembly , Insulin-Secreting Cells , Interferons , Humans , Insulin-Secreting Cells/metabolism , Cellular Senescence/genetics , Interferons/metabolism , Interferons/genetics , Insulin Secretion , Insulin/metabolism , Chromatin/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cells, Cultured , Senescence-Associated Secretory Phenotype/genetics , Transcriptome , Single-Cell Analysis
2.
Diabetes ; 73(4): 554-564, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38266068

ABSTRACT

Assessment of pancreas cell type composition is crucial to the understanding of the genesis of diabetes. Current approaches use immunodetection of protein markers, for example, insulin as a marker of ß-cells. A major limitation of these methods is that protein content varies in physiological and pathological conditions, complicating the extrapolation to actual cell number. Here, we demonstrate the use of cell type-specific DNA methylation markers for determining the fraction of specific cell types in human islet and pancreas specimens. We identified genomic loci that are uniquely demethylated in specific pancreatic cell types and applied targeted PCR to assess the methylation status of these loci in tissue samples, enabling inference of cell type composition. In islet preparations, normalization of insulin secretion to ß-cell DNA revealed similar ß-cell function in pre-type 1 diabetes (T1D), T1D, and type 2 diabetes (T2D), which was significantly lower than in donors without diabetes. In histological pancreas specimens from recent-onset T1D, this assay showed ß-cell fraction within the normal range, suggesting a significant contribution of ß-cell dysfunction. In T2D pancreata, we observed increased α-cell fraction and normal ß-cell fraction. Methylation-based analysis provides an accurate molecular alternative to immune detection of cell types in the human pancreas, with utility in the interpretation of insulin secretion assays and the assessment of pancreas cell composition in health and disease.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Glucagon-Secreting Cells , Insulin-Secreting Cells , Islets of Langerhans , Humans , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Islets of Langerhans/metabolism , DNA Methylation , Pancreas/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Glucagon-Secreting Cells/metabolism
3.
Med ; 4(4): 263-281.e4, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37060900

ABSTRACT

BACKGROUND: Vascular endothelial cells (VECs) are an essential component of each tissue, contribute to multiple pathologies, and are targeted by important drugs. Yet, there is a shortage of biomarkers to assess VEC turnover. METHODS: To develop DNA methylation-based liquid biopsies for VECs, we determined the methylome of VECs isolated from freshly dissociated human tissues. FINDINGS: A comparison with a human cell-type methylome atlas yielded thousands of loci that are uniquely unmethylated in VECs. These sites are typically gene enhancers, often residing adjacent to VEC-specific genes. We also identified hundreds of genomic loci that are differentially methylated in organotypic VECs, indicating that VECs feeding specific organs are distinct cell types with a stable epigenetic identity. We established universal and lung-specific VEC markers and evaluated their presence in circulating cell-free DNA (cfDNA). Nearly 2.5% of cfDNA in the plasma of healthy individuals originates from VECs. Sepsis, graft versus host disease, and cardiac catheterization are associated with elevated levels of VEC-derived cfDNA, indicative of vascular damage. Lung-specific VEC cfDNA is selectively elevated in patients with chronic obstructive pulmonary disease (COPD) or lung cancer, revealing tissue-specific vascular turnover. CONCLUSIONS: VEC cfDNA biomarkers inform vascular dynamics in health and disease, potentially contributing to early diagnosis and monitoring of pathologies, and assessment of drug activity. FUNDING: This work was supported by the Beutler Research Program, Helmsley Charitable Trust, JDRF, Grail and the DON Foundation (to Y.D.). Y.D holds the Walter & Greta Stiel Chair in heart studies. B.G., R.S., J.M., D.N., T.K., and Y.D. filed patents on cfDNA analysis.


Subject(s)
Cell-Free Nucleic Acids , Epigenome , Humans , Endothelium, Vascular , Endothelial Cells/metabolism , Biomarkers/metabolism , Liquid Biopsy
4.
Nature ; 613(7943): 355-364, 2023 01.
Article in English | MEDLINE | ID: mdl-36599988

ABSTRACT

DNA methylation is a fundamental epigenetic mark that governs gene expression and chromatin organization, thus providing a window into cellular identity and developmental processes1. Current datasets typically include only a fraction of methylation sites and are often based either on cell lines that underwent massive changes in culture or on tissues containing unspecified mixtures of cells2-5. Here we describe a human methylome atlas, based on deep whole-genome bisulfite sequencing, allowing fragment-level analysis across thousands of unique markers for 39 cell types sorted from 205 healthy tissue samples. Replicates of the same cell type are more than 99.5% identical, demonstrating the robustness of cell identity programmes to environmental perturbation. Unsupervised clustering of the atlas recapitulates key elements of tissue ontogeny and identifies methylation patterns retained since embryonic development. Loci uniquely unmethylated in an individual cell type often reside in transcriptional enhancers and contain DNA binding sites for tissue-specific transcriptional regulators. Uniquely hypermethylated loci are rare and are enriched for CpG islands, Polycomb targets and CTCF binding sites, suggesting a new role in shaping cell-type-specific chromatin looping. The atlas provides an essential resource for study of gene regulation and disease-associated genetic variants, and a wealth of potential tissue-specific biomarkers for use in liquid biopsies.


Subject(s)
Cells , DNA Methylation , Epigenesis, Genetic , Epigenome , Humans , Cell Line , Cells/classification , Cells/metabolism , Chromatin/genetics , Chromatin/metabolism , CpG Islands/genetics , DNA/genetics , DNA/metabolism , Embryonic Development , Enhancer Elements, Genetic , Organ Specificity , Polycomb-Group Proteins/metabolism , Whole Genome Sequencing
5.
Med ; 3(7): 468-480.e5, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35716665

ABSTRACT

BACKGROUND: Much remains unknown regarding the response of the immune system to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination. METHODS: We employed circulating cell-free DNA (cfDNA) to assess the turnover of specific immune cell types following administration of the Pfizer/BioNTech vaccine. FINDINGS: The levels of B cell cfDNA after the primary dose correlated with development of neutralizing antibodies and memory B cells after the booster, revealing a link between early B cell turnover-potentially reflecting affinity maturation-and later development of effective humoral response. We also observed co-elevation of B cell, T cell, and monocyte cfDNA after the booster, underscoring the involvement of innate immune cell turnover in the development of humoral and cellular adaptive immunity. Actual cell counts remained largely stable following vaccination, other than a previously demonstrated temporary reduction in neutrophil and lymphocyte counts. CONCLUSIONS: Immune cfDNA dynamics reveal the crucial role of the primary SARS-CoV-2 vaccine in shaping responses of the immune system following the booster vaccine. FUNDING: This work was supported by a generous gift from Shlomo Kramer. Supported by grants from Human Islet Research Network (HIRN UC4DK116274 and UC4DK104216 to R.S. and Y.D.), Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, The Alex U Soyka Pancreatic Cancer Fund, The Israel Science Foundation, the Waldholtz/Pakula family, the Robert M. and Marilyn Sternberg Family Charitable Foundation, the Helmsley Charitable Trust, Grail, and the DON Foundation (to Y.D.). Y.D. holds the Walter and Greta Stiel Chair and Research Grant in Heart Studies. I.F.-F. received a fellowship from the Glassman Hebrew University Diabetes Center.


Subject(s)
BNT162 Vaccine , COVID-19 , Cell-Free Nucleic Acids , SARS-CoV-2 , Adult , Aged , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/immunology , Female , Humans , Immunization, Secondary , Male , Memory B Cells/immunology , Memory B Cells/metabolism , Middle Aged , SARS-CoV-2/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...