Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 136(3): 44, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36897387

ABSTRACT

KEY MESSAGE: Breeding target traits can be broadened to include nutritive value and plant breeder's rights traits in perennial ryegrass by using in-field regression-based spectroscopy phenotyping and genomic selection. Perennial ryegrass breeding has focused on biomass yield, but expansion into a broader set of traits is needed to benefit livestock industries whilst also providing support for intellectual property protection of cultivars. Numerous breeding objectives can be targeted simultaneously with the development of sensor-based phenomics and genomic selection (GS). Of particular interest are nutritive value (NV), which has been difficult and expensive to measure using traditional phenotyping methods, resulting in limited genetic improvement to date, and traits required to obtain varietal protection, known as plant breeder's rights (PBR) traits. In order to assess phenotyping requirements for NV improvement and potential for genetic improvement, in-field reflectance-based spectroscopy was assessed and GS evaluated in a single population for three key NV traits, captured across four timepoints. Using three prediction approaches, the possibility of targeting PBR traits using GS was evaluated for five traits recorded across three years of a breeding program. Prediction accuracy was generally low to moderate for NV traits and moderate to high for PBR traits, with heritability highly correlated with GS accuracy. NV did not show significant or consistent correlation between timepoints highlighting the need to incorporate seasonal NV into selection indexes and the value of being able to regularly monitor NV across seasons. This study has demonstrated the ability to implement GS for both NV and PBR traits in perennial ryegrass, facilitating the expansion of ryegrass breeding targets to agronomically relevant traits while ensuring necessary varietal protection is achieved.


Subject(s)
Lolium , Lolium/genetics , Biomass , Plant Breeding , Phenotype , Genomics , Selection, Genetic
2.
Mol Genet Genomics ; 277(4): 413-25, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17216492

ABSTRACT

White clover (Trifolium repens L.) is an obligate outbreeding allotetraploid forage legume. Gene-associated SNPs provide the optimum genetic system for improvement of such crop species. An EST resource obtained from multiple cDNA libraries constructed from numerous genotypes of a single cultivar has been used for in silico SNP discovery and validation. A total of 58 from 236 selected sequence clusters (24.5%) were fully validated as containing polymorphic SNPs by genotypic analysis across the parents and progeny of several two-way pseudo-testcross mapping families. The clusters include genes belonging to a broad range of predicted functional categories. Polymorphic SNP-containing ESTs have also been used for comparative genomic analysis by comparison with whole genome data from model legume species, as well as Arabidopsis thaliana. A total of 29 (50%) of the 58 clusters detected putative ortholoci with known chromosomal locations in Medicago truncatula, which is closely related to white clover within the Trifolieae tribe of the Fabaceae. This analysis provides access to translational data from model species. The efficiency of in silico SNP discovery in white clover is limited by paralogous and homoeologous gene duplication effects, which are resolved unambiguously by the transmission test. This approach will also be applicable to other agronomically important cross-pollinating allopolyploid plant species.


Subject(s)
Chromosomes, Plant/genetics , Ploidies , Polymorphism, Single Nucleotide , Trifolium/genetics , Arabidopsis/genetics , Gene Duplication , Gene Library , Medicago sativa/genetics
3.
Theor Appl Genet ; 110(1): 12-32, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15526086

ABSTRACT

A molecular marker-based map of perennial ryegrass (Lolium perenne L.) has been constructed through the use of polymorphisms associated with expressed sequence tags (ESTs). A pair-cross between genotypes from a North African ecotype and the cultivar Aurora was used to generate a two-way pseudo-testcross population. A selection of 157 cDNAs assigned to eight different functional categories associated with agronomically important biological processes was used to detect polymorphic EST-RFLP loci in the F(1)(NA(6) x AU(6)) population. A comprehensive set of EST-SSR markers was developed from the analysis of 14,767 unigenes, with 310 primer pairs showing efficient amplification and detecting 113 polymorphic loci. Two parental genetic maps were produced: the NA(6) genetic map contains 88 EST-RFLP and 71 EST-SSR loci with a total map length of 963 cM, while the AU(6) genetic map contains 67 EST-RFLP and 58 EST-SSR loci with a total map length of 757 cM. Bridging loci permitted the alignment of homologous chromosomes between the parental maps, and a sub-set of genomic DNA-derived SSRs was used to relate linkage groups to the perennial ryegrass reference map. Regions of segregation distortion were identified, in some instances in common with other perennial ryegrass maps. The EST-derived marker-based map provides the basis for in silico comparative genetic mapping, as well as the evaluation of co-location between QTLs and functionally associated genetic loci.


Subject(s)
Lolium/genetics , Base Sequence , Chromosome Mapping , Crosses, Genetic , DNA, Plant/genetics , Expressed Sequence Tags , Genetic Markers , Minisatellite Repeats , Molecular Sequence Data , Polymorphism, Restriction Fragment Length
SELECTION OF CITATIONS
SEARCH DETAIL
...