Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Cell ; 186(7): 1493-1511.e40, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37001506

ABSTRACT

Understanding how genetic variants impact molecular phenotypes is a key goal of functional genomics, currently hindered by reliance on a single haploid reference genome. Here, we present the EN-TEx resource of 1,635 open-access datasets from four donors (∼30 tissues × âˆ¼15 assays). The datasets are mapped to matched, diploid genomes with long-read phasing and structural variants, instantiating a catalog of >1 million allele-specific loci. These loci exhibit coordinated activity along haplotypes and are less conserved than corresponding, non-allele-specific ones. Surprisingly, a deep-learning transformer model can predict the allele-specific activity based only on local nucleotide-sequence context, highlighting the importance of transcription-factor-binding motifs particularly sensitive to variants. Furthermore, combining EN-TEx with existing genome annotations reveals strong associations between allele-specific and GWAS loci. It also enables models for transferring known eQTLs to difficult-to-profile tissues (e.g., from skin to heart). Overall, EN-TEx provides rich data and generalizable models for more accurate personal functional genomics.


Subject(s)
Epigenome , Quantitative Trait Loci , Genome-Wide Association Study , Genomics , Phenotype , Polymorphism, Single Nucleotide
2.
Dev Cell ; 56(4): 557-568.e6, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33400914

ABSTRACT

Crop productivity depends on activity of meristems that produce optimized plant architectures, including that of the maize ear. A comprehensive understanding of development requires insight into the full diversity of cell types and developmental domains and the gene networks required to specify them. Until now, these were identified primarily by morphology and insights from classical genetics, which are limited by genetic redundancy and pleiotropy. Here, we investigated the transcriptional profiles of 12,525 single cells from developing maize ears. The resulting developmental atlas provides a single-cell RNA sequencing (scRNA-seq) map of an inflorescence. We validated our results by mRNA in situ hybridization and by fluorescence-activated cell sorting (FACS) RNA-seq, and we show how these data may facilitate genetic studies by predicting genetic redundancy, integrating transcriptional networks, and identifying candidate genes associated with crop yield traits.


Subject(s)
Genetic Association Studies , Quantitative Trait Loci/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Zea mays/growth & development , Zea mays/genetics , Base Sequence , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gene Regulatory Networks , Protoplasts/metabolism , Reproducibility of Results , Transcriptome/genetics
3.
Genome Res ; 30(7): 1047-1059, 2020 07.
Article in English | MEDLINE | ID: mdl-32759341

ABSTRACT

We have produced RNA sequencing data for 53 primary cells from different locations in the human body. The clustering of these primary cells reveals that most cells in the human body share a few broad transcriptional programs, which define five major cell types: epithelial, endothelial, mesenchymal, neural, and blood cells. These act as basic components of many tissues and organs. Based on gene expression, these cell types redefine the basic histological types by which tissues have been traditionally classified. We identified genes whose expression is specific to these cell types, and from these genes, we estimated the contribution of the major cell types to the composition of human tissues. We found this cellular composition to be a characteristic signature of tissues and to reflect tissue morphological heterogeneity and histology. We identified changes in cellular composition in different tissues associated with age and sex, and found that departures from the normal cellular composition correlate with histological phenotypes associated with disease.


Subject(s)
Transcription, Genetic , Cell Line , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Female , Gene Expression Profiling , Gynecomastia/genetics , Gynecomastia/metabolism , Humans , Male , Mesoderm/cytology , Mesoderm/metabolism , Neoplasms/genetics , Organ Specificity , Sequence Analysis, RNA
4.
Front Plant Sci ; 11: 289, 2020.
Article in English | MEDLINE | ID: mdl-32296450

ABSTRACT

MaizeCODE is a project aimed at identifying and analyzing functional elements in the maize genome. In its initial phase, MaizeCODE assayed up to five tissues from four maize strains (B73, NC350, W22, TIL11) by RNA-Seq, Chip-Seq, RAMPAGE, and small RNA sequencing. To facilitate reproducible science and provide both human and machine access to the MaizeCODE data, we enhanced SciApps, a cloud-based portal, for analysis and distribution of both raw data and analysis results. Based on the SciApps workflow platform, we generated new components to support the complete cycle of MaizeCODE data management. These include publicly accessible scientific workflows for the reproducible and shareable analysis of various functional data, a RESTful API for batch processing and distribution of data and metadata, a searchable data page that lists each MaizeCODE experiment as a reproducible workflow, and integrated JBrowse genome browser tracks linked with workflows and metadata. The SciApps portal is a flexible platform that allows the integration of new analysis tools, workflows, and genomic data from multiple projects. Through metadata and a ready-to-compute cloud-based platform, the portal experience improves access to the MaizeCODE data and facilitates its analysis.

5.
Genome Res ; 29(11): 1900-1909, 2019 11.
Article in English | MEDLINE | ID: mdl-31645363

ABSTRACT

MicroRNAs (miRNAs) play a critical role as posttranscriptional regulators of gene expression. The ENCODE Project profiled the expression of miRNAs in an extensive set of organs during a time-course of mouse embryonic development and captured the expression dynamics of 785 miRNAs. We found distinct organ-specific and developmental stage-specific miRNA expression clusters, with an overall pattern of increasing organ-specific expression as embryonic development proceeds. Comparative analysis of conserved miRNAs in mouse and human revealed stronger clustering of expression patterns by organ type rather than by species. An analysis of messenger RNA expression clusters compared with miRNA expression clusters identifies the potential role of specific miRNA expression clusters in suppressing the expression of mRNAs specific to other developmental programs in the organ in which these miRNAs are expressed during embryonic development. Our results provide the most comprehensive time-course of miRNA expression as part of an integrated ENCODE reference data set for mouse embryonic development.


Subject(s)
Embryonic Development/genetics , MicroRNAs/genetics , Animals , Female , Gene Expression Regulation, Developmental , Mice , Pregnancy , RNA, Messenger/genetics
6.
Nat Commun ; 6: 5903, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25582907

ABSTRACT

Mice have been a long-standing model for human biology and disease. Here we characterize, by RNA sequencing, the transcriptional profiles of a large and heterogeneous collection of mouse tissues, augmenting the mouse transcriptome with thousands of novel transcript candidates. Comparison with transcriptome profiles in human cell lines reveals substantial conservation of transcriptional programmes, and uncovers a distinct class of genes with levels of expression that have been constrained early in vertebrate evolution. This core set of genes captures a substantial fraction of the transcriptional output of mammalian cells, and participates in basic functional and structural housekeeping processes common to all cell types. Perturbation of these constrained genes is associated with significant phenotypes including embryonic lethality and cancer. Evolutionary constraint in gene expression levels is not reflected in the conservation of the genomic sequences, but is associated with conserved epigenetic marking, as well as with characteristic post-transcriptional regulatory programme, in which sub-cellular localization and alternative splicing play comparatively large roles.


Subject(s)
Evolution, Molecular , Gene Expression Regulation , Transcriptome , Alternative Splicing , Animals , Biological Evolution , Cell Line , Epigenesis, Genetic , Gene Expression Profiling , Gene Library , Genome , Histones/chemistry , Humans , Mice , Mice, Inbred C57BL , Models, Genetic , Oligonucleotides, Antisense , Phenotype , Sequence Analysis, RNA
7.
Nature ; 515(7527): 355-64, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25409824

ABSTRACT

The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.


Subject(s)
Genome/genetics , Genomics , Mice/genetics , Molecular Sequence Annotation , Animals , Cell Lineage/genetics , Chromatin/genetics , Chromatin/metabolism , Conserved Sequence/genetics , DNA Replication/genetics , Deoxyribonuclease I/metabolism , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Genome-Wide Association Study , Humans , RNA/genetics , Regulatory Sequences, Nucleic Acid/genetics , Species Specificity , Transcription Factors/metabolism , Transcriptome/genetics
8.
Nature ; 512(7515): 445-8, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25164755

ABSTRACT

The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters.


Subject(s)
Caenorhabditis elegans/genetics , Drosophila melanogaster/genetics , Gene Expression Profiling , Transcriptome/genetics , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/growth & development , Chromatin/genetics , Cluster Analysis , Drosophila melanogaster/growth & development , Gene Expression Regulation, Developmental/genetics , Histones/metabolism , Humans , Larva/genetics , Larva/growth & development , Models, Genetic , Molecular Sequence Annotation , Promoter Regions, Genetic/genetics , Pupa/genetics , Pupa/growth & development , RNA, Untranslated/genetics , Sequence Analysis, RNA
9.
Bioinformatics ; 29(1): 15-21, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23104886

ABSTRACT

MOTIVATION: Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. RESULTS: To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. AVAILABILITY AND IMPLEMENTATION: STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.


Subject(s)
Sequence Alignment/methods , Software , Algorithms , Cluster Analysis , Gene Expression Profiling , Genome, Human , Humans , RNA Splicing , Sequence Analysis, RNA/methods
10.
Nature ; 489(7414): 101-8, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22955620

ABSTRACT

Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.


Subject(s)
DNA/genetics , Encyclopedias as Topic , Genome, Human/genetics , Molecular Sequence Annotation , Regulatory Sequences, Nucleic Acid/genetics , Transcription, Genetic/genetics , Transcriptome/genetics , Alleles , Cell Line , DNA, Intergenic/genetics , Enhancer Elements, Genetic , Exons/genetics , Gene Expression Profiling , Genes/genetics , Genomics , Humans , Polyadenylation/genetics , Protein Isoforms/genetics , RNA/biosynthesis , RNA/genetics , RNA Editing/genetics , RNA Splicing/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, RNA
11.
PLoS One ; 7(1): e28213, 2012.
Article in English | MEDLINE | ID: mdl-22238572

ABSTRACT

The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5' and 3' transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network.


Subject(s)
Cells/metabolism , Gene Regulatory Networks/physiology , RNA/physiology , Transcriptome/physiology , Algorithms , Chimerin Proteins/chemistry , Chimerin Proteins/genetics , Chromosomes, Human, Pair 1/genetics , Female , Gene Expression Profiling , Gene Regulatory Networks/genetics , Humans , Male , Microarray Analysis/methods , Models, Biological , Nucleic Acid Amplification Techniques/methods , RNA/genetics , RNA Isoforms/chemistry , RNA Isoforms/genetics , RNA Isoforms/metabolism , Transcription, Genetic/genetics , Validation Studies as Topic
12.
Hum Mutat ; 30(9): E866-79, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19562714

ABSTRACT

The study of transcription using genomic tiling arrays has lead to the identification of numerous additional exons. One example is the MECP2 gene on the X chromosome; using 5'RACE and RT-PCR in human tissues and cell lines, we have found more than 70 novel exons (RACEfrags) connecting to at least one annotated exon.. We sequenced all MECP2-connected exons and flanking sequences in 3 groups: 46 patients with the Rett syndrome and without mutations in the currently annotated exons of the MECP2 and CDKL5 genes; 32 patients with the Rett syndrome and identified mutations in the MECP2 gene; 100 control individuals from the same geoethnic group. Approximately 13 kb were sequenced per sample, (2.4 Mb of DNA resequencing). A total of 75 individuals had novel rare variants (mostly private variants) but no statistically significant difference was found among the 3 groups. These results suggest that variants in the newly discovered exons may not contribute to Rett syndrome. Interestingly however, there are about twice more variants in the novel exons than in the flanking sequences (44 vs. 21 for approximately 1.3 Mb sequenced for each class of sequences, p=0.0025). Thus the evolutionary forces that shape these novel exons may be different than those of neighboring sequences.


Subject(s)
Exons/genetics , Genetic Variation , Methyl-CpG-Binding Protein 2/genetics , Rett Syndrome/genetics , DNA Mutational Analysis , Female , Humans , Male , Methyl-CpG-Binding Protein 2/metabolism , Protein Serine-Threonine Kinases , Rett Syndrome/metabolism
13.
Nat Methods ; 5(7): 629-35, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18500348

ABSTRACT

Rapid amplification of cDNA ends (RACE) is a widely used approach for transcript identification. Random clone selection from the RACE mixture, however, is an ineffective sampling strategy if the dynamic range of transcript abundances is large. To improve sampling efficiency of human transcripts, we hybridized the products of the RACE reaction onto tiling arrays and used the detected exons to delineate a series of reverse-transcriptase (RT)-PCRs, through which the original RACE transcript population was segregated into simpler transcript populations. We independently cloned the products and sequenced randomly selected clones. This approach, RACEarray, is superior to direct cloning and sequencing of RACE products because it specifically targets new transcripts and often results in overall normalization of transcript abundance. We show theoretically and experimentally that this strategy leads indeed to efficient sampling of new transcripts, and we investigated multiplexing the strategy by pooling RACE reactions from multiple interrogated loci before hybridization.


Subject(s)
DNA, Complementary/genetics , Gene Expression Profiling/methods , Gene Library , Nucleic Acid Amplification Techniques/methods , RNA/genetics , Alternative Splicing , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 22/genetics , Cloning, Molecular , Exons , Genome, Human , Humans , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis/methods , Protein Isoforms/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic
14.
Genome Res ; 17(6): 746-59, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17567994

ABSTRACT

This report presents systematic empirical annotation of transcript products from 399 annotated protein-coding loci across the 1% of the human genome targeted by the Encyclopedia of DNA elements (ENCODE) pilot project using a combination of 5' rapid amplification of cDNA ends (RACE) and high-density resolution tiling arrays. We identified previously unannotated and often tissue- or cell-line-specific transcribed fragments (RACEfrags), both 5' distal to the annotated 5' terminus and internal to the annotated gene bounds for the vast majority (81.5%) of the tested genes. Half of the distal RACEfrags span large segments of genomic sequences away from the main portion of the coding transcript and often overlap with the upstream-annotated gene(s). Notably, at least 20% of the resultant novel transcripts have changes in their open reading frames (ORFs), most of them fusing ORFs of adjacent transcripts. A significant fraction of distal RACEfrags show expression levels comparable to those of known exons of the same locus, suggesting that they are not part of very minority splice forms. These results have significant implications concerning (1) our current understanding of the architecture of protein-coding genes; (2) our views on locations of regulatory regions in the genome; and (3) the interpretation of sequence polymorphisms mapping to regions hitherto considered to be "noncoding," ultimately relating to the identification of disease-related sequence alterations.


Subject(s)
Chromosome Mapping , Exons , Genome, Human , Promoter Regions, Genetic , Quantitative Trait Loci , Transcription, Genetic/physiology , DNA, Complementary/genetics , Human Genome Project , Humans , Open Reading Frames
15.
Genome Res ; 17(6): 852-64, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17568003

ABSTRACT

Functional RNA structures play an important role both in the context of noncoding RNA transcripts as well as regulatory elements in mRNAs. Here we present a computational study to detect functional RNA structures within the ENCODE regions of the human genome. Since structural RNAs in general lack characteristic signals in primary sequence, comparative approaches evaluating evolutionary conservation of structures are most promising. We have used three recently introduced programs based on either phylogenetic-stochastic context-free grammar (EvoFold) or energy directed folding (RNAz and AlifoldZ), yielding several thousand candidate structures (corresponding to approximately 2.7% of the ENCODE regions). EvoFold has its highest sensitivity in highly conserved and relatively AU-rich regions, while RNAz favors slightly GC-rich regions, resulting in a relatively small overlap between methods. Comparison with the GENCODE annotation points to functional RNAs in all genomic contexts, with a slightly increased density in 3'-UTRs. While we estimate a significant false discovery rate of approximately 50%-70% many of the predictions can be further substantiated by additional criteria: 248 loci are predicted by both RNAz and EvoFold, and an additional 239 RNAz or EvoFold predictions are supported by the (more stringent) AlifoldZ algorithm. Five hundred seventy RNAz structure predictions fall into regions that show signs of selection pressure also on the sequence level (i.e., conserved elements). More than 700 predictions overlap with noncoding transcripts detected by oligonucleotide tiling arrays. One hundred seventy-five selected candidates were tested by RT-PCR in six tissues, and expression could be verified in 43 cases (24.6%).


Subject(s)
3' Untranslated Regions/genetics , GC Rich Sequence , Genome, Human , Quantitative Trait Loci , RNA, Untranslated/genetics , Transcription, Genetic , Base Sequence , Humans , Molecular Sequence Data , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
16.
Science ; 316(5830): 1484-8, 2007 Jun 08.
Article in English | MEDLINE | ID: mdl-17510325

ABSTRACT

Significant fractions of eukaryotic genomes give rise to RNA, much of which is unannotated and has reduced protein-coding potential. The genomic origins and the associations of human nuclear and cytosolic polyadenylated RNAs longer than 200 nucleotides (nt) and whole-cell RNAs less than 200 nt were investigated in this genome-wide study. Subcellular addresses for nucleotides present in detected RNAs were assigned, and their potential processing into short RNAs was investigated. Taken together, these observations suggest a novel role for some unannotated RNAs as primary transcripts for the production of short RNAs. Three potentially functional classes of RNAs have been identified, two of which are syntenically conserved and correlate with the expression state of protein-coding genes. These data support a highly interleaved organization of the human transcriptome.


Subject(s)
Genome, Human , RNA Precursors/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA/genetics , Transcription, Genetic , Animals , Cell Line, Tumor , Cell Nucleus/metabolism , Cytosol/metabolism , Exons , Gene Expression , Genome , HeLa Cells , Humans , Mice , Promoter Regions, Genetic , RNA/metabolism , RNA Precursors/metabolism , Synteny , Terminator Regions, Genetic
17.
J Leukoc Biol ; 79(6): 1328-38, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16614257

ABSTRACT

We report a novel mechanism, involving up-regulation of the interleukin (IL)-7 cytokine receptor, by which human immunodeficiency virus (HIV) enhances its own production in monocyte-derived macrophages (MDM) in vitro. HIV-1 infection or treatment of MDM cultures with exogenous HIV-1 Tat(86) protein up-regulates the IL-7 receptor (IL-7R) alpha-chain at the levels of steady-state RNA, protein, and functional IL-7R on the cell surface (as measured by ligand-induced receptor signaling). This IL-7R up-regulation is associated with increased amounts of HIV-1 virions in the supernatants of infected MDM cultures treated with exogenous IL-7 cytokine. The overall effect of IL-7 stimulation on HIV replication in MDM culture supernatants is typically in the range of one log and greater. The results are consistent with a model in which HIV infection produces the Tat protein, which in turn up-regulates IL-7R in a paracrine manner. This results in increased IL-7R signaling in response to the IL-7 cytokine, which ultimately promotes early events in HIV replication, including binding/entry and possibly other steps prior to reverse transcription. The results suggest that the effects of IL-7 on HIV replication in MDM should be considered when analyzing and designing clinical trials involving treatment of patients with IL-7 or Tat vaccines.


Subject(s)
Gene Products, tat/physiology , HIV-1/physiology , Interleukin-7/physiology , Macrophages/virology , Models, Biological , Virus Replication/physiology , Cells, Cultured/drug effects , Cells, Cultured/metabolism , Cells, Cultured/virology , Genes, tat , HIV Reverse Transcriptase/metabolism , Humans , Interleukin-7/adverse effects , Interleukin-7/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Paracrine Communication , STAT3 Transcription Factor/metabolism , Virion , Virus Replication/drug effects , tat Gene Products, Human Immunodeficiency Virus
18.
Genome Res ; 15(7): 987-97, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15998911

ABSTRACT

Recently, we mapped the sites of transcription across approximately 30% of the human genome and elucidated the structures of several hundred novel transcripts. In this report, we describe a novel combination of techniques including the rapid amplification of cDNA ends (RACE) and tiling array technologies that was used to further characterize transcripts in the human transcriptome. This technical approach allows for several important pieces of information to be gathered about each array-detected transcribed region, including strand of origin, start and termination positions, and the exonic structures of spliced and unspliced coding and noncoding RNAs. In this report, the structures of transcripts from 14 transcribed loci, representing both known genes and unannotated transcripts taken from the several hundred randomly selected unannotated transcripts described in our previous work are represented as examples of the complex organization of the human transcriptome. As a consequence of this complexity, it is not unusual that a single base pair can be part of an intricate network of multiple isoforms of overlapping sense and antisense transcripts, the majority of which are unannotated. Some of these transcripts follow the canonical splicing rules, whereas others combine the exons of different genes or represent other types of noncanonical transcripts. These results have important implications concerning the correlation of genotypes to phenotypes, the regulation of complex interlaced transcriptional patterns, and the definition of a gene.


Subject(s)
Nucleic Acid Amplification Techniques , Oligonucleotide Array Sequence Analysis , Transcription, Genetic , Cell Line , Gene Expression Profiling , Humans , Jurkat Cells , Models, Genetic , Molecular Sequence Data , Nucleic Acid Amplification Techniques/methods , Oligonucleotide Array Sequence Analysis/methods , Protein Isoforms/genetics , Tumor Cells, Cultured
19.
Science ; 308(5725): 1149-54, 2005 May 20.
Article in English | MEDLINE | ID: mdl-15790807

ABSTRACT

Sites of transcription of polyadenylated and nonpolyadenylated RNAs for 10 human chromosomes were mapped at 5-base pair resolution in eight cell lines. Unannotated, nonpolyadenylated transcripts comprise the major proportion of the transcriptional output of the human genome. Of all transcribed sequences, 19.4, 43.7, and 36.9% were observed to be polyadenylated, nonpolyadenylated, and bimorphic, respectively. Half of all transcribed sequences are found only in the nucleus and for the most part are unannotated. Overall, the transcribed portions of the human genome are predominantly composed of interlaced networks of both poly A+ and poly A- annotated transcripts and unannotated transcripts of unknown function. This organization has important implications for interpreting genotype-phenotype associations, regulation of gene expression, and the definition of a gene.


Subject(s)
Chromosomes, Human/genetics , Genome, Human , RNA, Messenger/analysis , Transcription, Genetic , Cell Line , Cell Line, Tumor , Cell Nucleus/metabolism , Chromosomes, Human, Pair 13/genetics , Chromosomes, Human, Pair 14/genetics , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 20/genetics , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 6/genetics , Chromosomes, Human, Pair 7/genetics , Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Computational Biology , Cytosol/metabolism , DNA, Complementary , DNA, Intergenic , Exons , Female , Humans , Introns , Male , Molecular Sequence Data , Nucleic Acid Amplification Techniques , Oligonucleotide Array Sequence Analysis , Physical Chromosome Mapping , RNA Splicing
20.
Genome Res ; 14(3): 331-42, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14993201

ABSTRACT

In this report, we have achieved a richer view of the transcriptome for Chromosomes 21 and 22 by using high-density oligonucleotide arrays on cytosolic poly(A)(+) RNA. Conservatively, only 31.4% of the observed transcribed nucleotides correspond to well-annotated genes, whereas an additional 4.8% and 14.7% correspond to mRNAs and ESTs, respectively. Approximately 85% of the known exons were detected, and up to 21% of known genes have only a single isoform based on exon-skipping alternative expression. Overall, the expression of the well-characterized exons falls predominately into two categories, uniquely or ubiquitously expressed with an identifiable proportion of antisense transcripts. The remaining observed transcription (49.0%) was outside of any known annotation. These novel transcripts appear to be more cell-line-specific and have lower and less variation in expression than the well-characterized genes. Novel transcripts were further characterized based on their distance to annotations, transcript size, coding capacity, and identification as antisense to intronic sequences. By RT-PCR, 126 novel transcripts were independently verified, resulting in a 65% verification rate. These observations strongly support the argument for a re-evaluation of the total number of human genes and an alternative term for "gene" to encompass these growing, novel classes of RNA transcripts in the human genome.


Subject(s)
Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 22/genetics , RNA/genetics , Transcription, Genetic/genetics , Cell Line , Cell Line, Tumor , Chromosome Mapping/methods , DNA, Neoplasm/genetics , Gene Expression Profiling/methods , Genes/genetics , Genes, Neoplasm/genetics , Humans , Jurkat Cells/chemistry , Jurkat Cells/metabolism , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis/methods , Oligonucleotide Probes/genetics , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...