Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 308(2): L208-20, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25416384

ABSTRACT

Pulmonary vascular remodeling, mainly attributable to enhanced pulmonary arterial smooth muscle cell proliferation and migration, is a major cause for elevated pulmonary vascular resistance and pulmonary arterial pressure in patients with pulmonary hypertension. The signaling cascade through Akt, comprised of three isoforms (Akt1-3) with distinct but overlapping functions, is involved in regulating cell proliferation and migration. This study aims to investigate whether the Akt/mammalian target of rapamycin (mTOR) pathway, and particularly which Akt isoform, contributes to the development and progression of pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Compared with the wild-type littermates, Akt1(-/-) mice were protected against the development and progression of chronic HPH, whereas Akt2(-/-) mice did not demonstrate any significant protection against the development of HPH. Furthermore, pulmonary vascular remodeling was significantly attenuated in the Akt1(-/-) mice, with no significant effect noted in the Akt2(-/-) mice after chronic exposure to normobaric hypoxia (10% O2). Overexpression of the upstream repressor of Akt signaling, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and conditional and inducible knockout of mTOR in smooth muscle cells were also shown to attenuate the rise in right ventricular systolic pressure and the development of right ventricular hypertrophy. In conclusion, Akt isoforms appear to have a unique function within the pulmonary vasculature, with the Akt1 isoform having a dominant role in pulmonary vascular remodeling associated with HPH. The PTEN/Akt1/mTOR signaling pathway will continue to be a critical area of study in the pathogenesis of pulmonary hypertension, and specific Akt isoforms may help specify therapeutic targets for the treatment of pulmonary hypertension.


Subject(s)
Hypertension, Pulmonary/genetics , Hypoxia/pathology , Proto-Oncogene Proteins c-akt/genetics , Vascular Remodeling , Animals , Blood Pressure/genetics , Blood Pressure/physiology , Cell Movement , Cell Proliferation , Humans , Hypertrophy, Right Ventricular , Lung/blood supply , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , PTEN Phosphohydrolase/biosynthesis , Phosphorylation , Pulmonary Artery/pathology , RNA Interference , RNA, Small Interfering , TOR Serine-Threonine Kinases/genetics , Tamoxifen/pharmacology , Vascular Resistance
2.
J Signal Transduct ; 2012: 951497, 2012.
Article in English | MEDLINE | ID: mdl-23056939

ABSTRACT

Pulmonary circulation is an important circulatory system in which the body brings in oxygen. Pulmonary arterial hypertension (PAH) is a progressive and fatal disease that predominantly affects women. Sustained pulmonary vasoconstriction, excessive pulmonary vascular remodeling, in situ thrombosis, and increased pulmonary vascular stiffness are the major causes for the elevated pulmonary vascular resistance (PVR) in patients with PAH. The elevated PVR causes an increase in afterload in the right ventricle, leading to right ventricular hypertrophy, right heart failure, and eventually death. Understanding the pathogenic mechanisms of PAH is important for developing more effective therapeutic approach for the disease. An increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC migration and proliferation which lead to pulmonary vascular wall thickening and remodeling. It is thus pertinent to define the pathogenic role of Ca(2+) signaling in pulmonary vasoconstriction and PASMC proliferation to develop new therapies for PAH. [Ca(2+)](cyt) in PASMC is increased by Ca(2+) influx through Ca(2+) channels in the plasma membrane and by Ca(2+) release or mobilization from the intracellular stores, such as sarcoplasmic reticulum (SR) or endoplasmic reticulum (ER). There are two Ca(2+) entry pathways, voltage-dependent Ca(2+) influx through voltage-dependent Ca(2+) channels (VDCC) and voltage-independent Ca(2+) influx through store-operated Ca(2+) channels (SOC) and receptor-operated Ca(2+) channels (ROC). This paper will focus on the potential role of VDCC, SOC, and ROC in the development and progression of sustained pulmonary vasoconstriction and excessive pulmonary vascular remodeling in PAH.

SELECTION OF CITATIONS
SEARCH DETAIL
...