Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chemistry ; 30(34): e202400322, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38629212

ABSTRACT

This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aß) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aß plaques in situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.


Subject(s)
Amyloid beta-Peptides , Fluorescent Dyes , Pyrenes , Fluorescent Dyes/chemistry , Pyrenes/chemistry , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Humans , Molecular Docking Simulation , Norbornanes/chemistry , Plaque, Amyloid/chemistry , Plaque, Amyloid/diagnostic imaging , Density Functional Theory , Isomerism , Spectrometry, Fluorescence
2.
JACS Au ; 3(3): 762-774, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37006756

ABSTRACT

We present a novel, correlative chemical imaging strategy based on multimodal matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), hyperspectral microscopy, and spatial chemometrics. Our workflow overcomes challenges associated with correlative MSI data acquisition and alignment by implementing 1 + 1-evolutionary image registration for precise geometric alignment of multimodal imaging data and their integration in a common, truly multimodal imaging data matrix with maintained MSI resolution (10 µm). This enabled multivariate statistical modeling of multimodal imaging data using a novel multiblock orthogonal component analysis approach to identify covariations of biochemical signatures between and within imaging modalities at MSI pixel resolution. We demonstrate the method's potential through its application toward delineating chemical traits of Alzheimer's disease (AD) pathology. Here, trimodal MALDI MSI of transgenic AD mouse brain delineates beta-amyloid (Aß) plaque-associated co-localization of lipids and Aß peptides. Finally, we establish an improved image fusion approach for correlative MSI and functional fluorescence microscopy. This allowed for high spatial resolution (300 nm) prediction of correlative, multimodal MSI signatures toward distinct amyloid structures within single plaque features critically implicated in Aß pathogenicity.

3.
ACS Sens ; 8(4): 1500-1509, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36946692

ABSTRACT

Amyloid beta (Aß) plaques are a major pathological hallmark of Alzheimer's disease (AD) and constitute of structurally heterogenic entities (polymorphs) that have been implicated in the phenotypic heterogeneity of AD pathology and pathogenesis. Understanding amyloid aggregation has been a critical limiting factor to gain understanding of AD pathogenesis, ultimately reflected in that the underlying mechanism remains elusive. We identified a fluorescent probe in the form of a turn-off photoswitchable norbornadiene derivative (NBD1) with several microenvironment-sensitive properties that make it relevant for applications within advanced fluorescence imaging, for example, multifunctional imaging. We explored the application of NBD1 for in situ delineation of structurally heterogenic Aß plaques in transgenic AD mouse models. NBD1 plaque imaging shows characteristic broader emission bands in the periphery and more narrow emission bands in the dense cores of mature cored plaques. Further, we demonstrate in situ photoisomerization of NBD1 to quadricyclane and thermal recovery in single plaques, which is relevant for applications within both functional and super-resolution imaging. This is the first time a norbornadiene photoswitch has been used as a probe for fluorescence imaging of Aß plaque pathology in situ and that its spectroscopic and switching properties have been studied within the specific environment of senile Aß plaques. These findings open the way toward new applications of NBD-based photoswitchable fluorescent probes for super-resolution or dual-color imaging and multifunctional microscopy of amyloid plaque heterogeneity. This could allow to visualize Aß plaques with resolution beyond the diffraction limit, label different plaque types, and gain insights into their physicochemical composition.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Amyloid beta-Peptides/chemistry , Plaque, Amyloid/pathology , Disease Models, Animal , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Mice, Transgenic , Fluorescent Dyes
4.
J Chem Phys ; 153(21): 214705, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33291902

ABSTRACT

Triplet-triplet annihilation photon upconversion (TTA-UC) in solid state assemblies are desirable since they can be easily incorporated into devices such as solar cells, thus utilizing more of the solar spectrum. Realizing this is, however, a significant challenge that must circumvent the need for molecular diffusion, poor exciton migration, and detrimental back energy transfer among other hurdles. Here, we show that the above-mentioned issues can be overcome using the versatile and easily synthesized oxotriphenylhexanoate (OTHO) gelator that allows covalent incorporation of chromophores (or other functional units) at well-defined positions. To study the self-assembly properties as well as its use as a TTA-UC platform, we combine the benchmark couple platinum octaethylporphyrin as a sensitizer and 9,10-diphenylanthracene (DPA) as an annihilator, where DPA is covalently linked to the OTHO gelator at different positions. We show that TTA-UC can be achieved in the chromophore-decorated gels and that the position of attachment affects the photophysical properties as well as triplet energy transfer and triplet-triplet annihilation. This study not only provides proof-of-principle for the covalent approach but also highlights the need for a detailed mechanistic insight into the photophysical processes underpinning solid state TTA-UC.

5.
Acc Chem Res ; 53(8): 1478-1487, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32662627

ABSTRACT

ConspectusRenewable energy resources are mostly intermittent and not evenly distributed geographically; for this reason, the development of new technologies for energy storage is in high demand.Molecules that undergo photoinduced isomerization reactions that are capable of absorbing light, storing it as chemical energy, and releasing it as thermal energy on demand are referred to as molecular solar thermal energy storage (MOST) or solar thermal fuels (STF). Such molecules offer a promising solution for solar energy storage applications. Different molecular systems have been investigated for MOST applications, such as norbornadienes, azobenzenes, stilbenes, ruthenium derivatives, anthracenes, and dihydroazulenes. The polycyclic strained molecule norbornadiene (NBD), which photoconverts to quadricyclane (QC), is of great interest because it has a high energy storage density and the potential to store energy for a very long time. Unsubstituted norbornadiene has some limitations in this regard, such as poor solar spectrum match and low quantum yield. In the past decade, our group has developed and tested new NBD systems with improved characteristics. Moreover, we have demonstrated their function in laboratory-scale test devices for solar energy harnessing, storage, and release.This Account describes the most impactful recent findings on how to engineer key properties of the NBD/QC system (photochemistry, energy storage, heat release, stability, and synthesis) as well as examples of test devices for solar energy capture and heat release. While it was known that introducing donor-acceptor groups allows for a red-shifted absorption that better matches the solar spectrum, we managed to introduce donor and acceptor groups with very low molecular weight, which allowed for an unprecedented solar spectrum match combined with high energy density. Strategic steric hindrance in some of these systems dramatically increases the storage time of the photoisomer QC, and dimeric systems have independent energies barriers that lead to an improved solar spectrum match, prolonged storage times, and higher energy densities. These discoveries offer a toolbox of possible chemical modifications that can be used to tune the properties of NBD/QC systems and make them suitable for the desired applications, which can be useful for anyone wanting to take on the challenge of designing efficient MOST systems.Several test devices have been built, for example, a hybrid MOST device that stores sunlight energy and heat water at the same time. Moreover, we developed a device for monitoring catalyzed QC to NBD conversion resulting in the possibility to quantify a significant macroscopic heat generation. Finally, we tested different formulations of polymeric composites that can absorb light during the day and release the energy as heat during the night for possible use in future window coating applications. These lab-scale realizations are formative and contribute to pushing the field forward toward the real-life application of MOST systems.

6.
Chempluschem ; 84(8): 1145-1148, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31943965

ABSTRACT

The performance of molecular solar thermal energy storage systems (MOST) depends amongst others on the amount of energy stored. Azobenzenes have been investigated as high-potential materials for MOST applications. In the present study it could be shown that intermolecular attractive London dispersion interactions stabilize the (E)-isomer in bisazobenzene that is linked by different alkyl bridges. Differential scanning calorimetry (DSC) measurements revealed, that this interaction leads to an increased storage energy per azo-unit of more than 3 kcal/mol compared to the parent azobenzene. The origin of this effect has been supported by computation as well as X-ray analysis. In the solid state structure attractive London dispersion interactions between the C-H of the alkyl bridge and the π-system of the azobenzene could be clearly assigned. This concept will be highly useful in designing more effective MOST systems in the future.

7.
J Phys Chem Lett ; 9(21): 6174-6178, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30296093

ABSTRACT

The photo- and acidochromic properties of a new generation norbornadiene derivative have been harnessed for the realization of a three-input keypad lock, where a specific sequence of inputs induces a unique output. Reversible quadricyclane/norbornadiene photoisomerization is reported, and this rare feature allows the first example of a norbornadiene-based molecular logic system. The function of this system is clearly rationalized in terms of the interconversion scheme and the absorption spectra of the involved species.

8.
Chemistry ; 24(49): 12767-12772, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-29978927

ABSTRACT

Norbornadiene-quadricyclane (NBD-QC) photoswitches are candidates for applications in solar thermal energy storage. Functionally, they rely on an intramolecular [2+2] cycloaddition reaction, which couples the S0 landscape on the NBD side to the S1 landscape on the QC side of the reaction and vice-versa. This commonly results in an unfavourable correlation between the first absorption maximum and the barrier for thermal back-conversion. This work demonstrates that this correlation can be counteracted by using steric repulsion to hamper the rotational motion of the side groups along the back-conversion path. It is shown that this modification reduces the correlation between the effective back-conversion barrier and the first absorption maximum and also increases the back-conversion entropy. The resulting molecules exhibit exceptionally long half-lives for their metastable forms without significantly affecting other properties, most notably solar spectrum match and storage density.

9.
Phys Chem Chem Phys ; 19(17): 10931-10939, 2017 May 03.
Article in English | MEDLINE | ID: mdl-28402383

ABSTRACT

Triplet-triplet annihilation photon upconversion (TTA-UC) can, through a number of energy transfer processes, efficiently combine two low frequency photons into one photon of higher frequency. TTA-UC systems consist of one absorbing species (the sensitizer) and one emitting species (the annihilator). Herein, we show that the structurally similar annihilators, 9,10-diphenylanthracene (DPA, 1), 9-(4-phenylethynyl)-10-phenylanthracene (2) and 9,10-bis(phenylethynyl)anthracene (BPEA, 3) have very different upconversion efficiencies, 15.2 ± 2.8%, 15.9 ± 1.3% and 1.6 ± 0.8%, respectively (of a maximum of 50%). We show that these results can be understood in terms of a loss channel, previously unaccounted for, originating from the difference between the BPEA singlet and triplet surface shapes. The difference between the two surfaces results in a fraction of the triplet state population having geometries not energetically capable of forming the first singlet excited state. This is supported by TD-DFT calculations of the annihilator excited state surfaces as a function of phenyl group rotation. We thereby highlight that the commonly used "spin-statistical factor" should be used with caution when explaining TTA-efficiencies. Furthermore, we show that the precious metal free zinc octaethylporphyrin (ZnOEP) can be used for efficient sensitization and that the upconversion quantum yield is maximized when sensitizer-annihilator spectral overlap is minimized (ZnOEP with 2).

10.
Chemistry ; 22(37): 13265-74, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27492997

ABSTRACT

Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...