Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 98(1): 169-78, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25465542

ABSTRACT

The main objective of this study was to evaluate the relationship between circulating anti-Müllerian hormone (AMH) and superovulatory response of dairy cows. Holstein cows (n=72) were milked twice daily and housed and fed individually in tiestalls. All animals were synchronized and flushed at 70±3 d in milk (DIM), near peak production (39.6kg/d). Blood samples for AMH analysis were collected at 3 different stages of a synchronized estrous cycle [at a random stage (40±3 DIM), proestrus (50±3 DIM), and diestrus (57±3 DIM)]. Body weights were measured weekly from calving until embryo collection. Statistical analyses were performed with Proc CORR and Proc GLIMMIX of SAS (SAS Institute Inc., Cary, NC). The 3 AMH samples from individual cows were correlated and not influenced by day of cycle. Surprisingly, AMH tended to be negatively correlated with body weight loss from calving to embryo collection (r=-0.22). More importantly, average AMH was highly associated (r=0.65) with superovulation response (number of corpora lutea on the day of the flush, CLN), total structures collected (r=0.48), and total transferable embryos (r=0.37), but not percentage of fertilized embryos (r=-0.20) or degenerate embryos (r=0.02). When cows were classified into quartiles (Q) of circulating AMH (Q1=0.01 to 82.6pg/mL; Q2=91.1 to 132.5pg/mL; Q3=135.3 to 183.8pg/mL; Q4=184.4 to 374.3pg/mL), we observed a >2-fold difference between first and fourth AMH quartiles in superovulation response (CLN: Q1=12.0±1.5; Q2=14.7±2.0; Q3=17.2±1.2; Q4=25.6±1.5) and embryo production. In conclusion, circulating AMH concentration was strongly associated with superovulation response, and evaluation of AMH could be used to identify cows with greater responses to superstimulation and thus improve efficiency of superovulation programs in dairy cows.


Subject(s)
Anti-Mullerian Hormone/blood , Cattle/physiology , Superovulation/physiology , Animals , Embryo Transfer/veterinary , Estrous Cycle/physiology , Female
2.
J Dairy Sci ; 97(9): 5521-32, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24952785

ABSTRACT

The objectives of the current experiment were to determine the effects of 2 prepartum stocking densities on milk yield, concentration of metabolites during the peripartum period, and health and reproductive parameters of dairy cows. Jersey cows enrolled in the experiment at 254±3 d of gestation were balanced for parity (nulliparous vs. parous) and previous lactation projected 305-d mature equivalent milk yield (parous) and assigned to 1 of 2 treatments: 80% headlock stocking density (80SD; 38 animals/48 headlocks) and 100% headlock stocking density (100SD; 48 animals/48 headlocks). The number of experimental units was 8 (4 replicates and 2 pens/treatment per replicate). In total, 154 nulliparous and 184 parous animals were enrolled in the 80SD treatment and 186 nulliparous and 232 parous animals were enrolled in the 100SD treatment. At the start of each replicate, treatments were switched within pen. Cows were milked thrice daily and monthly milk yield, fat and protein content, and somatic cell count data were recorded up to 155 d postpartum. Plasma nonesterified fatty acid concentration was measured weekly, from -18±3 to 17±3 d relative to calving, and plasma ß-hydroxybutyrate was measured weekly, from 1±2 to 17±3 d relative to calving. Cows were examined 1, 4±1, 7±1, 10±1, and 13±1 d relative to calving for diagnosis of uterine diseases. Blood was sampled for determination of progesterone concentration and resumption of ovarian cycles 35±3 and 45±3 d relative to calving. Average headlock (74.1±0.4 vs. 94.5±0.3%) and stall (80.8±0.4 vs. 103.1±0.4%) stocking density was lower for the 80SD treatment compared with the 100SD treatment. Treatment did not affect incidence of retained fetal membranes (80SD=5.1, 100SD=7.8%), metritis (80SD=21.2, 100SD=16.7%), acute metritis (80SD=9.9, 100SD=9.4%), and vaginal purulent discharge (80SD=5.8, 100SD=7.9%). Concentrations of nonesterified fatty acids (80SD=251.5±6.1, 100SD=245.9±5.6µmol/L) and ß-hydroxybutyrate (80SD=508.2±14.3, 100SD=490.9±13.6µmol/L) were not different between treatments. Treatment had no effect on percentage of cows removed from the herd on the first 60 d postpartum (80SD=6.1, 100SD=5.1%) and on rate of removal from the herd up to 305 d postpartum 80SD=referent, 100SD [adjusted hazard ratio (95% confidence interval)]=1.02 (0.75, 1.38). Percentages of cows pregnant to first (80SD=41.9, 100SD=48.4%) and second (80SD=49.3, 100SD=42.0%) postpartum AI were not different between treatments. Finally, treatment did not affect energy-corrected milk yield up to 155 d postpartum (80SD=33.8±0.5, 100SD=33.4±0.5kg/d). In herds with weekly or twice weekly movement of new cows to the prepartum pen and separate housing of nulliparous and parous animals, a target stocking density of 100% of headlocks on the day of movement is not expected to affect health, metabolic, reproductive, and productive parameters.


Subject(s)
Cattle Diseases/epidemiology , Cattle/physiology , Endometritis/veterinary , Milk/metabolism , Placenta, Retained/veterinary , Reproduction , 3-Hydroxybutyric Acid/blood , Animals , Behavior, Animal , Cell Count , Endometritis/epidemiology , Fatty Acids, Nonesterified/blood , Female , Incidence , Lactation , Logistic Models , Parity , Peripartum Period , Placenta, Retained/epidemiology , Population Density , Postpartum Period , Pregnancy , Progesterone/blood
3.
J Dairy Sci ; 97(6): 3666-83, 2014.
Article in English | MEDLINE | ID: mdl-24731646

ABSTRACT

The relationship between energy status and fertility in dairy cattle was retrospectively analyzed by comparing fertility with body condition score (BCS) near artificial insemination (AI; experiment 1), early postpartum changes in BCS (experiment 2), and postpartum changes in body weight (BW; experiment 3). To reduce the effect of cyclicity status, all cows were synchronized with Double-Ovsynch protocol before timed AI. In experiment 1, BCS of lactating dairy cows (n = 1,103) was evaluated near AI. Most cows (93%) were cycling at initiation of the breeding Ovsynch protocol (first GnRH injection). A lower percentage pregnant to AI (P/AI) was found in cows with lower (≤ 2.50) versus higher (≥ 2.75) BCS (40.4 vs. 49.2%). In experiment 2, lactating dairy cows on 2 commercial dairies (n = 1,887) were divided by BCS change from calving until the third week postpartum. Overall, P/AI at 70-d pregnancy diagnosis differed dramatically by BCS change and was least for cows that lost BCS, intermediate for cows that maintained BCS, and greatest for cows that gained BCS [22.8% (180/789), 36.0% (243/675), and 78.3% (331/423), respectively]. Surprisingly, a difference existed between farms with BCS change dramatically affecting P/AI on one farm and no effect on the other farm. In experiment 3, lactating dairy cows (n = 71) had BW measured weekly from the first to ninth week postpartum and then had superovulation induced using a modified Double-Ovsynch protocol. Cows were divided into quartiles (Q) by percentage of BW change (Q1 = least change; Q4 = most change) from calving until the third week postpartum. No effect was detected of quartile on number of ovulations, total embryos collected, or percentage of oocytes that were fertilized; however, the percentage of fertilized oocytes that were transferable embryos was greater for cows in Q1, Q2, and Q3 than Q4 (83.8, 75.2, 82.6, and 53.2%, respectively). In addition, percentage of degenerated embryos was least for cows in Q1, Q2, and Q3 and greatest for Q4 (9.6, 14.5, 12.6, and 35.2% respectively). In conclusion, for cows synchronized with a Double-Ovsynch protocol, an effect of low BCS (≤ 2.50) near AI on fertility was detected, but change in BCS during the first 3 wk postpartum had a more profound effect on P/AI to first timed AI. This effect could be partially explained by the reduction in embryo quality and increase in degenerate embryos byd 7 after AI in cows that lost more BW from the first to third week postpartum.


Subject(s)
Body Composition , Cattle/physiology , Fertility , Ovulation , Postpartum Period , Animals , Body Weight , Embryo Transfer/veterinary , Energy Metabolism , Fatty Acids, Nonesterified/metabolism , Female , Gonadotropin-Releasing Hormone/metabolism , Insemination, Artificial/veterinary , Lactation , Retrospective Studies
4.
J Dairy Sci ; 97(2): 764-78, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24359829

ABSTRACT

Multiple metabolic and hormonal factors can affect the success of protocols for ovarian superstimulation. In this study, the effect of acute feed restriction and increased LH content in the superstimulatory FSH preparation on numbers of ovulations, fertilization, and embryo quality in lactating dairy cows was evaluated. Two experiments were performed using a Latin square design with treatments arranged as a 2 × 2 factorial: feed restriction (FR; 25% reduction in dry matter intake) compared with ad libitum (AL) feeding, combined with high (H) versus low (L) LH in the last 4 injections of the superstimulatory protocol. As expected, FR decreased circulating insulin concentrations (26.7 vs. 46.0 µU/mL). Two analyses were performed: one that evaluated the complete Latin square in experiment 2 and a second that evaluated only the first periods of experiments 1 and 2. For both analyses, follicle numbers, ovulation rates, and corpora lutea on d 7 were not different. In the first period analysis of experiments 1 and 2, we observed an interaction between feed allowance and amount of LH on fertilization rates, percentage of embryos or oocytes that were quality 1 and 2 embryos, and number of embryos or oocytes that were degenerate. Fertilization rates were greater for the AL-L (89.4%) and FR-H (80.1%) treatments compared with the AL-H (47.9%) and FR-L (59.9%) treatments. Similarly, the proportion of total embryos or oocytes designated as quality 1 and 2 embryos was greater for AL-L (76.7%) and FR-H (73.4%) treatments compared with AL-H (35.6%) and FR-L (47.3%) treatments. In addition, the number of degenerate embryos was decreased for AL-L (1.3) and FR-H (0.4) treatments compared with the AL-H (2.6) and FR-L (2.3) treatments. Thus, cows with either too low (FR-L) or too high (AL-H) insulin and LH stimulation had lesser embryo production after superstimulation because of reduced fertilization rate and increased percentage of degenerate embryos. Therefore, interaction of the gonadotropin content of the superstimulatory preparation with the nutritional program of the donor cow needs to be considered to optimize success of ovarian superstimulatory protocols.


Subject(s)
Cattle/physiology , Fertilization/drug effects , Follicle Stimulating Hormone/pharmacology , Food Deprivation , Luteinizing Hormone/pharmacology , Ovarian Follicle/physiology , Ovulation/drug effects , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Female , Lactation , Oocytes/physiology , Random Allocation
5.
Theriogenology ; 80(9): 1074-81, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24084230

ABSTRACT

The primary objective of this study was to determine the effect of site of semen deposition on fertilization rate and embryo quality in superovulated cows. The hypothesis was that deposition of semen into the uterine horns would increase the fertilization rate compared with deposition of semen into the uterine body. The secondary objective was to evaluate the effect of uterine environment on fertilization rate and embryo quality. It was hypothesized that subclinical endometritis at the onset of superstimulation would decrease the fertilization rates and embryo quality. In experiment 1, 17 superovulated heifers were randomly assigned to receive artificial insemination (AI) into the uterine body or uterine horns. The total number of fertilized structures and fertilization rate from superovulated heifers was increased (P = 0.04 and P = 0.02, respectively) when semen was deposited into the uterine horns compared with the uterine body. Other embryo characteristics did not differ based on the site of semen deposition. In experiment 2, 14 lactating dairy cows were superovulated twice and were randomly assigned to receive AI into the uterine body or deep into the uterine horns using a crossover design. Neither fertilization rate nor any other embryo characteristics were improved when semen was placed deep into the uterine horns compared with the uterine body. In experiment 3, 72 superovulated lactating dairy cows were randomly assigned to receive AI into the uterine body or uterine horns. Before initiation of superstimulatory treatments, an endometrial cytology sample was collected from each cow. Ova/embryos were collected by a nonsurgical technique at 70 ± 3 days in milk. Similar to experiment 2, neither fertilization rate nor any other embryo characteristics differed based on the site of semen deposition in experiment 3. The percentage of cows with subclinical endometritis did not differ between treatments. Interestingly, there was a tendency (P = 0.09) for a reduction in embryo recovery rate and a reduction (P = 0.01) in the fertilization rate for cows with subclinical endometritis. In conclusion, deposition of semen into the uterine horns rather than into the uterine body did not improve the fertilization rate or embryo quality in superovulated cows. Subclinical endometritis decreased the fertilization rate in superovulated cows.


Subject(s)
Cattle/physiology , Fertilization/physiology , Insemination, Artificial/veterinary , Superovulation , Animals , Embryonic Development , Female , Insemination, Artificial/methods , Uterus/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...