Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Vis Exp ; (185)2022 07 20.
Article in English | MEDLINE | ID: mdl-35938795

ABSTRACT

Interest in liquid-electron microscopy (liquid-EM) has skyrocketed in recent years as scientists can now observe real-time processes at the nanoscale. It is extremely desirable to pair high-resolution cryo-EM information with dynamic observations as many events occur at rapid timescales - in the millisecond range or faster. Improved knowledge of flexible structures can also assist in the design of novel reagents to combat emerging pathogens, such as SARS-CoV-2. More importantly, viewing biological materials in a fluid environment provides a unique glimpse of their performance in the human body. Presented here are newly developed methods to investigate the nanoscale properties of virus assemblies in liquid and vitreous ice. To accomplish this goal, well-defined samples were used as model systems. Side-by-side comparisons of sample preparation methods and representative structural information are presented. Sub-nanometer features are shown for structures resolved in the range of ~3.5-Å-10 Å. Other recent results that support this complementary framework include dynamic insights of vaccine candidates and antibody-based therapies imaged in liquid. Overall, these correlative applications advance our ability to visualize molecular dynamics, providing a unique context for their use in human health and disease.


Subject(s)
COVID-19 , Ice , Cryoelectron Microscopy/methods , Humans , SARS-CoV-2 , Specimen Handling
3.
Curr Opin Struct Biol ; 75: 102426, 2022 08.
Article in English | MEDLINE | ID: mdl-35868163

ABSTRACT

Liquid-electron microscopy (EM), the room temperature correlate to cryo-EM, is an exciting new technique delivering real-time data of dynamic reactions in solution. Here, we explain how liquid-EM gained popularity in recent years by examining key experiments conducted on viral assemblies and host-pathogen interactions. We describe developing workflows for specimen preparation, data collection, and computing processes that led to the first high-resolution virus structures in a liquid environment. Equally important, we review why liquid-electron tomography may become the next big thing in biomedical research due to its ability to monitor live viruses entering cells within seconds. Taken together, we pose the idea that liquid-EM can serve as a dynamic complement to current cryo-EM methods, inspiring the "real-time revolution" in nanoscale imaging.


Subject(s)
Electron Microscope Tomography , Viruses , Cryoelectron Microscopy/methods , Microscopy, Electron , Viral Structures , Viruses/chemistry
4.
Microsc Microanal ; : 1-10, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35048845

ABSTRACT

Liquid-electron microscopy (EM), the room-temperature correlate to cryo-EM, is a rapidly growing field providing high-resolution insights of macromolecules in solution. Here, we describe how liquid-EM experiments can incorporate automated tools to propel the field to new heights. We demonstrate fresh workflows for specimen preparation, data collection, and computing processes to assess biological structures in liquid. Adeno-associated virus (AAV) and the SARS-CoV-2 nucleocapsid (N) were used as model systems to highlight the technical advances. These complexes were selected based on their major differences in size and natural symmetry. AAV is a highly symmetric, icosahedral assembly with a particle diameter of ~25 nm. At the other end of the spectrum, N protein is an asymmetric monomer or dimer with dimensions of approximately 5­7 nm, depending upon its oligomerization state. Equally important, both AAV and N protein are popular subjects in biomedical research due to their high value in vaccine development and therapeutic efforts against COVID-19. Overall, we demonstrate how automated practices in liquid-EM can be used to decode molecules of interest for human health and disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...