Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 28(Pt 3): 688-706, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33949979

ABSTRACT

The high-precision X-ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X-ray Free-Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump-probe X-ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X-ray heating and diffraction of Bi under pressure, obtained using 20 fs X-ray pulses at 17.8 keV and 2.2 MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC.

2.
Sci Rep ; 10(1): 13172, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32764631

ABSTRACT

Laser compression has long been used as a method to study solids at high pressure. This is commonly achieved by sandwiching a sample between two diamond anvils and using a ramped laser pulse to slowly compress the sample, while keeping it cool enough to stay below the melt curve. We demonstrate a different approach, using a multilayer 'ring-up' target whereby laser-ablation pressure compresses Pb up to 150 GPa while keeping it solid, over two times as high in pressure than where it would shock melt on the Hugoniot. We find that the efficiency of this approach compares favourably with the commonly used diamond sandwich technique and could be important for new facilities located at XFELs and synchrotrons which often have higher repetition rate, lower energy lasers which limits the achievable pressures that can be reached.

3.
Rev Sci Instrum ; 91(6): 065109, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32611059

ABSTRACT

We present a multi-purpose radiation furnace designed for x-ray experiments at synchrotrons. The furnace is optimized specifically for dark-field x-ray microscopy (DFXM) of crystalline materials at beamline ID06 of the European Synchrotron Radiation Facility. The furnace can reach temperatures above 1200 °C with a thermal stability better than 10 °C, with heating and cooling rates up to 30 K/s. The non-contact heating design enables samples to be heated either in air or in a controlled atmosphere contained within a capillary tube. The temperature was calibrated via the thermal expansion of an α-iron grain. Temperature profiles in the y and z axes were measured by scanning a thermocouple through the focal spot of the radiation furnace. In the current configuration of the beamline, this furnace can be used for DFXM, near-field x-ray topography, bright-field x-ray nanotomography, high-resolution reciprocal space mapping, and limited powder diffraction experiments. As a first application, we present a DFXM case study on isothermal heating of a commercially pure single crystal of aluminum.

SELECTION OF CITATIONS
SEARCH DETAIL
...