ABSTRACT
Aging is associated with declining serum levels of androgenic hormones and with increased skeletal muscle fat infiltration, an emerging risk factor for type 2 diabetes mellitus (T2DM). Androgens regulate fat mass and glucose homeostasis, but the effect of androgenic hormones on skeletal muscle fat infiltration is largely unknown. Thus, the aim of the current study was to examine the association of serum androgens and their precursors and metabolites with skeletal muscle fat infiltration and T2DM in a black male population group at high risk of T2DM. Serum androgens, estrogens, and androgen precursors and metabolites were measured using mass spectrometry; and calf skeletal muscle fat distribution (subcutaneous and intermuscular fat; skeletal muscle density) was measured using quantitative computed tomography in 472 Afro-Caribbean men 65 years and older. Bioactive androgens, testosterone, free testosterone, and dihydrotestosterone were associated with less skeletal muscle fat infiltration (r = -0.14 to -0.18, P < .05) and increased skeletal muscle density (r = 0.10 to 0.14, P < .05), independent of total adiposity. In addition, glucuronidated androgen metabolites were associated with less subcutaneous fat (r = -0.11 to -0.15, P < .05). Multivariate logistic regression analysis identified an increased level of 3α-diol-3 glucuronide (odds ratio = 1.38, P < .01) and a decreased level of dihydrotestosterone (odds ratio = 0.66, P < .01) to be significantly associated with T2DM. Our findings suggest that, in elderly black men, independent of total adiposity, bioactive androgens and glucuronidated androgen metabolites may play previously unrecognized role in skeletal muscle fat distribution. Longitudinal studies are needed to further evaluate the relationship between androgens and androgen metabolites with changes in skeletal muscle fat distribution with aging and the incidence of T2DM.
Subject(s)
Adiposity/physiology , Aging/metabolism , Androgens/metabolism , Muscle, Skeletal/metabolism , Aged , Aged, 80 and over , Black People , Body Composition/physiology , Body Mass Index , Humans , Insulin Resistance/physiology , Male , Overweight/metabolism , Trinidad and TobagoABSTRACT
Little is known about the progression of bone loss during young adulthood and whether it differs between men and women. As part of the San Antonio Family Osteoporosis Study we tested whether bone mineral density (BMD) changed over time in men or women, and whether the rate of BMD change differed between the sexes. BMD of the proximal femur, spine, radius, and whole body was measured in 115 men and 202 pre-menopausal women (ages 25 to 45 years; Mexican American ancestry) by dual-energy x-ray absorptiometry at two time points (5.6 years apart), from which annual percent change-in-BMD was calculated. Likelihood-based methods were used to test whether change-in-BMD differs from zero or differs between men and women. In men, percent change-in-BMD was significantly greater than zero for the 1/3 radius (i.e. indicating a gain of BMD; Bonferroni-adjusted p<0.01), less than zero for the femoral neck, lumbar spine, ultradistal radius, and whole body (i.e. indicating a loss of BMD; p<0.01 for all), and not different than zero for the total hip (p=0.24). In women, percent change-in-BMD was greater than zero for the total hip, 1/3 radius, and whole body (p<0.01 for all), less than zero for the ultradistal radius (p<0.01), and not significantly different than zero for the femoral neck and lumbar spine (p=1.0 for both). For all skeletal sites, men experienced greater decrease in BMD (or less increase in BMD) than women; this result was observed both with and without adjustment for age, BMI, and change-in-BMI (p<0.05 for all). These results suggest that significant bone loss occurs at some skeletal sites in young men and women, and that loss of BMD is occurring significantly faster, or gain of BMD is occurring significantly slower, in young men compared to young women.