Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 102(5): 1000-1016, 2023 May.
Article in English | MEDLINE | ID: mdl-36880500

ABSTRACT

Critical thermal maxima methodology (CTM) has been used to infer acute upper thermal tolerance in fishes since the 1950s, yet its ecological relevance remains debated. In this study, the authors synthesize evidence to identify methodological concerns and common misconceptions that have limited the interpretation of critical thermal maximum (CTmax ; value for an individual fish during one trial) in ecological and evolutionary studies of fishes. They identified limitations of, and opportunities for, using CTmax as a metric in experiments, focusing on rates of thermal ramping, acclimation regimes, thermal safety margins, methodological endpoints, links to performance traits and repeatability. Care must be taken when interpreting CTM in ecological contexts, because the protocol was originally designed for ecotoxicological research with standardized methods to facilitate comparisons within study individuals, across species and contexts. CTM can, however, be used in ecological contexts to predict impacts of environmental warming, but only if parameters influencing thermal limits, such as acclimation temperature or rate of thermal ramping, are taken into account. Applications can include mitigating the effects of climate change, informing infrastructure planning or modelling species distribution, adaptation and/or performance in response to climate-related temperature change. The authors' synthesis points to several key directions for future research that will further aid the application and interpretation of CTM data in ecological contexts.


Subject(s)
Acclimatization , Fishes , Animals , Fishes/physiology , Temperature , Acclimatization/physiology , Biological Evolution , Adaptation, Physiological , Climate Change
2.
J Fish Biol ; 97(2): 572-576, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32441325

ABSTRACT

Environmental DNA (eDNA) analysis is increasingly used for biomonitoring and research of fish populations and communities by environmental resource managers and academic researchers. Although managers are much interested in expanding the use of eDNA as a survey technique, they are sceptical about both its utility (given that information is often limited to presence/absence of a species) and feasibility (given the need for proper laboratory facilities for sample processing). Nonetheless, under the right circumstances, eDNA analysis is cost-effective compared to many traditional aquatic survey methods and does not disturb habitat or harm the animals being surveyed. This article presents a case study in which eDNA analysis was successfully used to document the presence of a rare fish species in a waterway earmarked for restoration. The authors discuss the conditions that allowed this study to occur quickly and smoothly and speculate on how the goals of researchers and managers can be integrated for efficient and informative use of this tool.


Subject(s)
Perciformes/physiology , Animals , California , Conservation of Natural Resources , Ecosystem , Endangered Species , Environmental Monitoring/methods
3.
Physiol Biochem Zool ; 93(3): 243-254, 2020.
Article in English | MEDLINE | ID: mdl-32293978

ABSTRACT

Both laboratory and field respirometry are rapidly growing techniques to determine animal performance thresholds. However, replicating protocols to estimate maximum metabolic rate (MMR) between species, populations, and individuals can be difficult, especially in the field. We therefore evaluated seven different exercise treatments-four laboratory methods involving a swim tunnel (critical swim speed [Ucrit], Ucrit postswim fatigue, maximum swim speed [Umax], and Umax postswim fatigue) and three field-based chasing methods (3-min chase with 1-min air exposure, 3-min chase with no air exposure, and chase to exhaustion)-in adult coho salmon (Oncorhynchus kisutch) as a case study to determine best general practices for measuring and quantifying MMR in fish. We found that all seven methods were highly comparable and that chase treatments represent a valuable field alternative to swim tunnels. Moreover, we caution that the type of test and duration of measurement windows used to calculate MMR can have significant effects on estimates of MMR and statistical power for each approach.


Subject(s)
Oncorhynchus kisutch , Oxygen Consumption , Animals , Fishes , Swimming , Fatigue
4.
Mol Ecol Resour ; 19(1): 19-22, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30701707

ABSTRACT

Despite mounting threats to global freshwater and marine biodiversity, including climate change, habitat alteration, overharvesting and pollution, we struggle to know which species are present below the water's surface that are suffering from these stressors. However, the idea that a water sample containing environmental DNA (eDNA) can be screened using high-throughput sequencing and bioinformatics to reveal the identity of aquatic species is a revolutionary advance for studying the patterns of species extirpation, invasive species establishment and the dynamics of species richness. To date, many of the critical tests of fisheries diversity using this metabarcoding approach have been conducted in lower diversity systems (<40 fish species), but in this issue of Molecular Ecology Resources, Cilleros et al. (2018) described their eDNA application in the species-rich French Guiana fishery (>200 fish species) and showed the greater potential and some limitations of using eDNA in species-rich environments.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic/methods , Fishes/classification , Fishes/genetics , Metagenomics/methods , Animals , Computational Biology , DNA/chemistry , DNA/genetics , DNA/isolation & purification , French Guiana , High-Throughput Nucleotide Sequencing , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...