Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Proc Natl Acad Sci U S A ; 120(27): e2304441120, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37368926

ABSTRACT

Eating a varied diet is a central tenet of good nutrition. Here, we develop a molecular tool to quantify human dietary plant diversity by applying DNA metabarcoding with the chloroplast trnL-P6 marker to 1,029 fecal samples from 324 participants across two interventional feeding studies and three observational cohorts. The number of plant taxa per sample (plant metabarcoding richness or pMR) correlated with recorded intakes in interventional diets and with indices calculated from a food frequency questionnaire in typical diets (ρ = 0.40 to 0.63). In adolescents unable to collect validated dietary survey data, trnL metabarcoding detected 111 plant taxa, with 86 consumed by more than one individual and four (wheat, chocolate, corn, and potato family) consumed by >70% of individuals. Adolescent pMR was associated with age and household income, replicating prior epidemiologic findings. Overall, trnL metabarcoding promises an objective and accurate measure of the number and types of plants consumed that is applicable to diverse human populations.


Subject(s)
Diet , Nutritional Status , Adolescent , Humans , DNA, Plant/genetics , Plants/genetics , DNA Barcoding, Taxonomic
2.
Ann Surg ; 275(6): 1094-1102, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35258509

ABSTRACT

OBJECTIVE: To design and establish a prospective biospecimen repository that integrates multi-omics assays with clinical data to study mechanisms of controlled injury and healing. BACKGROUND: Elective surgery is an opportunity to understand both the systemic and focal responses accompanying controlled and well-characterized injury to the human body. The overarching goal of this ongoing project is to define stereotypical responses to surgical injury, with the translational purpose of identifying targetable pathways involved in healing and resilience, and variations indicative of aberrant peri-operative outcomes. METHODS: Clinical data from the electronic medical record combined with large-scale biological data sets derived from blood, urine, fecal matter, and tissue samples are collected prospectively through the peri-operative period on patients undergoing 14 surgeries chosen to represent a range of injury locations and intensities. Specimens are subjected to genomic, transcriptomic, proteomic, and metabolomic assays to describe their genetic, metabolic, immunologic, and microbiome profiles, providing a multidimensional landscape of the human response to injury. RESULTS: The highly multiplexed data generated includes changes in over 28,000 mRNA transcripts, 100 plasma metabolites, 200 urine metabolites, and 400 proteins over the longitudinal course of surgery and recovery. In our initial pilot dataset, we demonstrate the feasibility of collecting high quality multi-omic data at pre- and postoperative time points and are already seeing evidence of physiologic perturbation between timepoints. CONCLUSIONS: This repository allows for longitudinal, state-of-the-art geno-mic, transcriptomic, proteomic, metabolomic, immunologic, and clinical data collection and provides a rich and stable infrastructure on which to fuel further biomedical discovery.


Subject(s)
Computational Biology , Proteomics , Genomics , Humans , Metabolomics , Prospective Studies , Proteomics/methods
3.
Obesity (Silver Spring) ; 29(3): 569-578, 2021 03.
Article in English | MEDLINE | ID: mdl-33624438

ABSTRACT

OBJECTIVE: The purpose of this study was to establish a biorepository of clinical, metabolomic, and microbiome samples from adolescents with obesity as they undergo lifestyle modification. METHODS: A total of 223 adolescents aged 10 to 18 years with BMI ≥95th percentile were enrolled, along with 71 healthy weight participants. Clinical data, fasting serum, and fecal samples were collected at repeated intervals over 6 months. Herein, the study design, data collection methods, and interim analysis-including targeted serum metabolite measurements and fecal 16S ribosomal RNA gene amplicon sequencing among adolescents with obesity (n = 27) and healthy weight controls (n = 27)-are presented. RESULTS: Adolescents with obesity have higher serum alanine aminotransferase, C-reactive protein, and glycated hemoglobin, and they have lower high-density lipoprotein cholesterol when compared with healthy weight controls. Metabolomics revealed differences in branched-chain amino acid-related metabolites. Also observed was a differential abundance of specific microbial taxa and lower species diversity among adolescents with obesity when compared with the healthy weight group. CONCLUSIONS: The Pediatric Metabolism and Microbiome Study (POMMS) biorepository is available as a shared resource. Early findings suggest evidence of a metabolic signature of obesity unique to adolescents, along with confirmation of previously reported findings that describe metabolic and microbiome markers of obesity.


Subject(s)
Pediatric Obesity/metabolism , Pediatric Obesity/microbiology , Adolescent , Body Weight/physiology , Case-Control Studies , Child , Fasting , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Humans , Male , Metabolomics/methods , Preliminary Data , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics
4.
Lung Cancer ; 153: 90-98, 2021 03.
Article in English | MEDLINE | ID: mdl-33465699

ABSTRACT

OBJECTIVES: Despite disparities in lung cancer incidence and mortality, the molecular landscape of lung cancer in patients of African ancestry remains underexplored, and race-related differences in RNA splicing remain unexplored. MATERIALS AND METHODS: We identified differentially spliced genes (DSGs) and differentially expressed genes (DEGs) in biobanked lung squamous cell carcinoma (LUSC) between patients of West African and European ancestry, using ancestral genotyping and Affymetrix Clariom D array. DSGs and DEGs were validated independently using the National Cancer Institute Genomic Data Commons. Associated biological processes, overlapping canonical pathways, enriched gene sets, and cancer relevance were identified using Gene Ontology Consortium, Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, and CancerMine, respectively. Association with LUSC survival was conducted using The Cancer Genome Atlas. RESULTS: 4,829 DSGs and 267 DEGs were identified, including novel targets in NSCLC as well as genes identified previously to have relevance to NSCLC. RNA splicing events within 3 DSGs as well as 1 DEG were validated in the independent cohort. 853 DSGs and 29 DEGs have been implicated as potential drivers, oncogenes and/or tumor suppressor genes. Biological processes enriched among DSGs and DEGs included metabolic process, biological regulation, and multicellular organismal process and, among DSGs, ion transport. Overlapping canonical pathways among DSGs included neuronal signaling pathways and, among DEGs, cell metabolism involving biosynthesis. Gene sets enriched among DSGs included KRAS Signaling, UV Response, E2 F Targets, Glycolysis, and Coagulation. 355 RNA splicing events within DSGs and 18 DEGs show potential association with LUSC patient survival. CONCLUSION: These DSGs and DEGs, which show potential biological and clinical relevance, could have the ability to drive novel biomarker and therapeutic development to mitigate LUSC disparities.


Subject(s)
Carcinoma, Squamous Cell , Lung Neoplasms , Carcinoma, Squamous Cell/genetics , Gene Expression , Gene Expression Regulation, Neoplastic , Humans , Lung , Lung Neoplasms/genetics , RNA Splicing/genetics
5.
mBio ; 11(4)2020 08 11.
Article in English | MEDLINE | ID: mdl-32788375

ABSTRACT

Pediatric obesity remains a public health burden and continues to increase in prevalence. The gut microbiota plays a causal role in obesity and is a promising therapeutic target. Specifically, the microbial production of short-chain fatty acids (SCFA) from the fermentation of otherwise indigestible dietary carbohydrates may protect against pediatric obesity and metabolic syndrome. Still, it has not been demonstrated that therapies involving microbiota-targeting carbohydrates, known as prebiotics, will enhance gut bacterial SCFA production in children and adolescents with obesity (age, 10 to 18 years old). Here, we used an in vitro system to examine the SCFA production by fecal microbiota from 17 children with obesity when exposed to five different commercially available over-the-counter (OTC) prebiotic supplements. We found microbiota from all 17 patients actively metabolized most prebiotics. Still, supplements varied in their acidogenic potential. Significant interdonor variation also existed in SCFA production, which 16S rRNA sequencing supported as being associated with differences in the host microbiota composition. Last, we found that neither fecal SCFA concentration, microbiota SCFA production capacity, nor markers of obesity positively correlated with one another. Together, these in vitro findings suggest the hypothesis that OTC prebiotic supplements may be unequal in their ability to stimulate SCFA production in children and adolescents with obesity and that the most acidogenic prebiotic may differ across individuals.IMPORTANCE Pediatric obesity remains a major public health problem in the United States, where 17% of children and adolescents are obese, and rates of pediatric "severe obesity" are increasing. Children and adolescents with obesity face higher health risks, and noninvasive therapies for pediatric obesity often have limited success. The human gut microbiome has been implicated in adult obesity, and microbiota-directed therapies can aid weight loss in adults with obesity. However, less is known about the microbiome in pediatric obesity, and microbiota-directed therapies are understudied in children and adolescents. Our research has two important findings: (i) dietary prebiotics (fiber) result in the microbiota from adolescents with obesity producing more SCFA, and (ii) the effectiveness of each prebiotic is donor dependent. Together, these findings suggest that prebiotic supplements could help children and adolescents with obesity, but that these therapies may not be "one size fits all."


Subject(s)
Bacteria/classification , Bacteria/metabolism , Fatty Acids, Volatile/biosynthesis , Gastrointestinal Microbiome , Obesity/microbiology , Prebiotics/administration & dosage , Adolescent , Child , Diet , Dietary Fiber/administration & dosage , Feces/microbiology , Female , Fermentation , Humans , Longitudinal Studies , Male , United States
6.
BMC Pediatr ; 20(1): 308, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32590958

ABSTRACT

BACKGROUND: The prevalence of child and adolescent obesity and severe obesity continues to increase despite decades of policy and research aimed at prevention. Obesity strongly predicts cardiovascular and metabolic disease risk; both begin in childhood. Children who receive intensive behavioral interventions can reduce body mass index (BMI) and reverse disease risk. However, delivering these interventions with fidelity at scale remains a challenge. Clinic-community partnerships offer a promising strategy to provide high-quality clinical care and deliver behavioral treatment in local park and recreation settings. The Hearts & Parks study has three broad objectives: (1) evaluate the effectiveness of the clinic-community model for the treatment of child obesity, (2) define microbiome and metabolomic signatures of obesity and response to lifestyle change, and (3) inform the implementation of similar models in clinical systems. METHODS: Methods are designed for a pragmatic randomized, controlled clinical trial (n = 270) to test the effectiveness of an integrated clinic-community child obesity intervention as compared with usual care. We are powered to detect a difference in body mass index (BMI) between groups at 6 months, with follow up to 12 months. Secondary outcomes include changes in biomarkers for cardiovascular disease, psychosocial risk, and quality of life. Through collection of biospecimens (serum and stool), additional exploratory outcomes include microbiome and metabolomics biomarkers of response to lifestyle modification. DISCUSSION: We present the study design, enrollment strategy, and intervention details for a randomized clinical trial to measure the effectiveness of a clinic-community child obesity treatment intervention. This study will inform a critical area in child obesity and cardiovascular risk research-defining outcomes, implementation feasibility, and identifying potential molecular mechanisms of treatment response. CLINICAL TRIAL REGISTRATION: NCT03339440 .


Subject(s)
Pediatric Obesity , Adolescent , Body Mass Index , Child , Family , Humans , Life Style , Pediatric Obesity/therapy , Quality of Life , Randomized Controlled Trials as Topic
7.
Int J Hyperthermia ; 31(4): 386-95, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25811737

ABSTRACT

PURPOSE: We have previously reported that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) perfusion patterns obtained from locally advanced breast cancer (LABC) patients prior to neoadjuvant therapy predicted pathologic clinical response. Genomic analyses were also independently conducted on the same patient population. This retrospective study was performed to test two hypotheses: (1) gene expression profiles are associated with DCE-MRI perfusion patterns, and (2) association between long-term overall survival data and gene expression profiles can lead to the identification of novel predictive biomarkers. METHODS: We utilised RNA microarray and DCE-MRI data from 47 LABC patients, including 13 inflammatory breast cancer (IBC) patients. Association between gene expression profile and DCE-MRI perfusion patterns (centrifugal and centripetal) was determined by Wilcoxon rank sum test. Association between gene expression level and survival was assessed using a Cox rank score test. Additional genomic analysis of the IBC subset was conducted, with a period of follow-up of up to 11 years. Associations between gene expression and overall survival were further assessed in The Cancer Genome Atlas Data Portal. RESULTS: Differences in gene expression profiles were seen between centrifugal and centripetal perfusion patterns in the sulphotransferase family, cytosolic, 1 A, phenol-preferring, members 1 and 2 (SULT1A1, SULT1A2), poly (ADP-ribose) polymerase, member 6 (PARP6), and metastasis tumour antigen1 (MTA1). In the IBC subset our analyses demonstrated that differential expression of 45 genes was associated with long-term survival. CONCLUSIONS: Here we have demonstrated an association between DCE-MRI perfusion patterns and gene expression profiles. In addition we have reported on candidate prognostic biomarkers in IBC patients, with some of the genes being significantly associated with survival in IBC and LABC.


Subject(s)
Breast Neoplasms/genetics , Magnetic Resonance Imaging/methods , Transcriptome , Aged , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Contrast Media , Female , Follow-Up Studies , Humans , Microarray Analysis , Middle Aged , Prognosis , Retrospective Studies , Survival Rate
8.
PLoS One ; 9(9): e107897, 2014.
Article in English | MEDLINE | ID: mdl-25255453

ABSTRACT

Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.


Subject(s)
Environmental Exposure/analysis , Radiation Dosage , Translational Research, Biomedical/methods , Adult , Aged , Animals , Blood Cells/metabolism , Blood Cells/radiation effects , Female , Humans , Male , Mice , Middle Aged , Radiation Injuries/blood , Radiation Injuries/genetics , Radiometry , Transcriptome/radiation effects , Whole-Body Irradiation/adverse effects , Young Adult
10.
BMC Med Genomics ; 4: 58, 2011 Jul 11.
Article in English | MEDLINE | ID: mdl-21745407

ABSTRACT

BACKGROUND: Gene expression signatures developed to measure the activity of oncogenic signaling pathways have been used to dissect the heterogeneity of tumor samples and to predict sensitivity to various cancer drugs that target components of the relevant pathways, thus potentially identifying therapeutic options for subgroups of patients. To facilitate broad use, including in a clinical setting, the ability to generate data from formalin-fixed, paraffin-embedded (FFPE) tissues is essential. METHODS: Patterns of pathway activity in matched fresh-frozen and FFPE xenograft tumor samples were generated using the MessageAmp Premier methodology in combination with assays using Affymetrix arrays. Results generated were compared with those obtained from fresh-frozen samples using a standard Affymetrix assay. In addition, gene expression data from patient matched fresh-frozen and FFPE melanomas were also utilized to evaluate the consistency of predictions of oncogenic signaling pathway status. RESULTS: Significant correlation was observed between pathway activity predictions from paired fresh-frozen and FFPE xenograft tumor samples. In addition, significant concordance of pathway activity predictions was also observed between patient matched fresh-frozen and FFPE melanomas. CONCLUSIONS: Reliable and consistent predictions of oncogenic pathway activities can be obtained from FFPE tumor tissue samples. The ability to reliably utilize FFPE patient tumor tissue samples for genomic analyses will lead to a better understanding of the biology of disease progression and, in the clinical setting, will provide tools to guide the choice of therapeutics to those most likely to be effective in treating a patient's disease.


Subject(s)
Gene Expression Profiling , Neoplasms/genetics , Paraffin Embedding , Animals , Female , Fixatives/chemistry , Formaldehyde/chemistry , Genome , Humans , Melanoma/genetics , Mice , Mice, Nude , Oligonucleotide Array Sequence Analysis/methods , Tissue Fixation/methods
11.
N Engl J Med ; 364(12): 1176, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21366430

ABSTRACT

To the Editor: We would like to retract our article, "A Genomic Strategy to Refine Prognosis in Early-Stage Non-Small-Cell Lung Cancer,"(1) which was published in the Journal on August 10, 2006. Using a sample set from a study by the American College of Surgeons Oncology Group (ACOSOG) and a collection of samples from a study by the Cancer and Leukemia Group B (CALGB), we have tried and failed to reproduce results supporting the validation of the lung metagene model described in the article. We deeply regret the effect of this action on the work of other investigators.

13.
PLoS One ; 5(7): e11535, 2010 Jul 12.
Article in English | MEDLINE | ID: mdl-20634956

ABSTRACT

In the event of a terrorist-mediated attack in the United States using radiological or improvised nuclear weapons, it is expected that hundreds of thousands of people could be exposed to life-threatening levels of ionizing radiation. We have recently shown that genome-wide expression analysis of the peripheral blood (PB) can generate gene expression profiles that can predict radiation exposure and distinguish the dose level of exposure following total body irradiation (TBI). However, in the event a radiation-mass casualty scenario, many victims will have heterogeneous exposure due to partial shielding and it is unknown whether PB gene expression profiles would be useful in predicting the status of partially irradiated individuals. Here, we identified gene expression profiles in the PB that were characteristic of anterior hemibody-, posterior hemibody- and single limb-irradiation at 0.5 Gy, 2 Gy and 10 Gy in C57Bl6 mice. These PB signatures predicted the radiation status of partially irradiated mice with a high level of accuracy (range 79-100%) compared to non-irradiated mice. Interestingly, PB signatures of partial body irradiation were poorly predictive of radiation status by site of injury (range 16-43%), suggesting that the PB molecular response to partial body irradiation was anatomic site specific. Importantly, PB gene signatures generated from TBI-treated mice failed completely to predict the radiation status of partially irradiated animals or non-irradiated controls. These data demonstrate that partial body irradiation, even to a single limb, generates a characteristic PB signature of radiation injury and thus may necessitate the use of multiple signatures, both partial body and total body, to accurately assess the status of an individual exposed to radiation.


Subject(s)
Gene Expression Profiling/methods , Radiation, Ionizing , Animals , Female , Gene Expression/radiation effects , Leukocytes, Mononuclear/radiation effects , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Radiation Injuries, Experimental , Whole-Body Irradiation/adverse effects
14.
J Clin Oncol ; 28(13): 2198-206, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20368555

ABSTRACT

PURPOSE: Identifying sources of variation in expression microarray data and the effect of variance in gene expression measurements on complex predictive and diagnostic models is essential when translating microarray-based experimental approaches into clinical assays. The technical reproducibility of microarray platforms is well established. Here, we investigate the additional impact of intratumor heterogeneity, a largely unstudied component of variance, on the performance of several microarray-based assays in breast cancer. PATIENTS AND METHODS: Genome-wide expression profiling was performed on 50 core needle biopsies from 18 breast cancer patients using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Global profiles of expression were characterized using unsupervised clustering methods and variance components models. Array-based measures of estrogen receptor (ER) and progesterone receptor (PR) status were compared with immunohistochemistry. The precision of genomic predictors of ER pathway status, recurrence risk, and sensitivity to chemotherapeutics was evaluated by interclass correlation. RESULTS: Global patterns of gene expression demonstrated that intratumor variation was substantially less than the total variation observed across the patient population. Nevertheless, a fraction of genes exhibited significant intratumor heterogeneity in expression. A high degree of reproducibility was observed in single-gene predictors of ER (intraclass correlation coefficient [ICC] = 0.94) and PR expression (ICC = 0.90), and in a multigene predictor of ER pathway activation (ICC = 0.98) with high concordance with immunohistochemistry. Substantial agreement was also observed for multigene signatures of cancer recurrence (ICC = 0.71) and chemotherapeutic sensitivity (ICC = 0.72 and 0.64). CONCLUSION: Intratumor heterogeneity, although present at the level of individual gene expression, does not preclude precise microarray-based predictions of tumor behavior or clinical outcome in breast cancer patients.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Genetic Testing/methods , Oligonucleotide Array Sequence Analysis , Antineoplastic Agents/therapeutic use , Biopsy, Needle , Breast Neoplasms/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Cluster Analysis , Female , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Neoplasm Staging , Predictive Value of Tests , Receptor, ErbB-2/analysis , Receptors, Estrogen/analysis , Receptors, Progesterone/analysis , Recurrence , Reproducibility of Results , Time Factors , Treatment Outcome
15.
Gynecol Oncol ; 116(3): 556-62, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20006900

ABSTRACT

OBJECTIVE: The objective of this study was to examine the clinicopathologic correlates of T-regulatory (T(reg)) cell infiltration in serous ovarian cancers and to define gene signatures associated with high T(reg)s. METHODS: Tumor infiltrating T(reg) and cytotoxic T-cells (CTLs) were quantitated in 232 primary serous ovarian cancers by immunostaining for FOXP3 and CD8. Expression microarray analysis was performed in a subset of 48 advanced cancers with the highest and lowest numbers of infiltrating T(reg)s and a genomic signature was developed using binary regression. ANOVA analysis was performed to assess the most differentially expressed genes and these genes were further assessed using Ingenuity Pathway Analysis (IPA) software. RESULTS: High T(reg) infiltration in ovarian cancers was associated with high grade (p<0.0001), advanced stage (p=0.004) and suboptimal debulking (p<0.04), but not with survival. In contrast, high tumor infiltrating CD8 CTL infiltration was associated with favorable survival (median survival 48.7 vs. 34.6 months, p=0.01). A microarray-based genomic signature for high tumor-infiltrating T(reg) cells had a 77% predictive accuracy using leave-one-out cross-validation. ANOVA of microarray data revealed the antigen presentation pathway as the most differentially expressed canonical pathway (p<0.00001) between cancers with high and low T(reg) cells. CONCLUSIONS: These data suggest that there may be an association between increased T(reg) cell infiltration in ovarian cancers and advanced stage. Increased T(reg) infiltration is characterized by a genomic signature enriched with several immunologic pathway genes. Therapeutic strategies that reduce tumor infiltrating T(reg) cells are under investigation and may prove useful in ovarian cancers with high numbers of these cells.


Subject(s)
Lymphocytes, Tumor-Infiltrating/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , T-Lymphocytes, Regulatory/immunology , Adult , Aged , Aged, 80 and over , Antigen Presentation , Female , Gene Expression/immunology , Humans , Lymphocytes, Tumor-Infiltrating/pathology , Middle Aged , Neoplasm Metastasis , Ovarian Neoplasms/genetics , Phenotype , T-Lymphocytes, Regulatory/pathology , Young Adult
16.
Clin Cancer Res ; 15(7): 2448-55, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19318476

ABSTRACT

PURPOSE: Although few women with advanced serous ovarian cancer are cured, detection of the disease at an early stage is associated with a much higher likelihood of survival. We previously used gene expression array analysis to distinguish subsets of advanced cancers based on disease outcome. In the present study, we report on gene expression of early-stage cancers and validate our prognostic model for advanced-stage cancers. EXPERIMENTAL DESIGN: Frozen specimens from 39 stage I/II, 42 stage III/IV, and 20 low malignant potential cancers were obtained from four different sites. A linear discriminant model was used to predict survival based upon array data. RESULTS: We validated the late-stage survival model and show that three of the most differentially expressed genes continue to be predictive of outcome. Most early-stage cancers (38 of 39 invasive, 15 of 20 low malignant potential) were classified as long-term survivors (median probabilities 0.97 and 0.86). MAL, the most differentially expressed gene, was further validated at the protein level and found to be an independent predictor of poor survival in an unselected group of advanced serous cancers (P = 0.0004). CONCLUSIONS: These data suggest that serous ovarian cancers detected at an early stage generally have a favorable underlying biology similar to advanced-stage cases that are long-term survivors. Conversely, most late-stage ovarian cancers seem to have a more virulent biology. This insight suggests that if screening approaches are to succeed it will be necessary to develop approaches that are able to detect these virulent cancers at an early stage.


Subject(s)
Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Ovarian Neoplasms/mortality , Female , Humans , Membrane Glycoproteins/analysis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Prognosis , Receptors, Interleukin-1/analysis
17.
Proc Natl Acad Sci U S A ; 106(13): 5312-7, 2009 Mar 31.
Article in English | MEDLINE | ID: mdl-19279207

ABSTRACT

We investigated the clinical implications of lung developmental transcription factors (TTF-1, NKX2-8, and PAX9) that we recently discovered as cooperating oncogenes activated by way of gene amplification at chromosome 14q13 in lung cancer. Using stable transfectants of human bronchial epithelial cells, RNA expression profiles (signatures) representing activation of the biological pathways defined by each of the 3 genes were determined and used to risk stratify a non-small-cell lung cancer (NSCLC) clinical data set consisting of 91 early stage tumors. Coactivation of the TTF-1 and NKX2-8 pathways identified a cluster of patients with poor survival, representing approximately 20% of patients with early stage NSCLC, whereas activation of individual pathways did not reveal significant prognostic power. Importantly, the poor prognosis associated with coactivation of TTF-1 and NKX2-8 was validated in 2 other independent clinical data sets. Furthermore, lung cancer cell lines showing coactivation of the TTF-1 and NKX2-8 pathways were shown to exhibit resistance to cisplatin, the standard of care for the treatment of NSCLC. This suggests that the cohort of patients with coactivation of TTF-1 and NKX2-8 pathways appears to be resistant to standard cisplatin therapy, suggesting the need for alternative therapies in this cohort of high-risk patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnosis , DNA-Binding Proteins/metabolism , Homeodomain Proteins/metabolism , PAX9 Transcription Factor/metabolism , Transcription Factors/metabolism , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Chromosomes, Human, Pair 14 , Cohort Studies , Gene Amplification , Gene Expression Profiling , Humans , Lung Neoplasms , Oncogenes , Prognosis , Risk Assessment , Survival Rate
18.
Breast Cancer Res Treat ; 118(3): 635-43, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19224362

ABSTRACT

Feasibility and reproducibility of microarray biomarkers in clinical settings are doubted because of reliance on fresh frozen tissue. We sought to develop and validate a paradigm of frozen tissue collection from early breast tumors to enable use of microarray in oncology practice. Frozen core needle biopsies (CNBx) were collected from 150 clinical stage I patients during image-guided diagnostic biopsy and/or surgery. Histology and tumor content from frozen cores were compared to diagnostic specimens. Twenty-eight patients had microarray analysis to examine accuracy and reproducibility of predictive gene signatures developed for estrogen receptor (ER) and HER2. One hundred twenty-seven (85%) of 150 patients had at least one frozen core containing cancer suitable for microarray analysis. Larger tumor size, ex vivo biopsy, and use of a new specimen device increased the likelihood of obtaining adequate specimens. Sufficient quality RNA was obtained from 90% of tumor cores. Microarray signatures predicting ER and HER2 expression were developed in training sets of up to 363 surgical samples and were applied to microarray data obtained from core samples collected in clinical settings. In these samples, prediction of ER and HER2 expression achieved a sensitivity/specificity of 94%/100%, and 82%/72%, respectively. Predictions were reproducible in 83-100% of paired samples. Frozen CNBx can be readily obtained from most breast cancers without interfering with pathologic evaluation in routine clinical settings. Collection of tumor tissue at diagnostic biopsy and/or at surgery from lumpectomy specimens using image guidance resulted in sufficient samples for array analysis from over 90% of patients. Sampling of breast cancer for microarray data is reproducible and feasible in clinical practice and can yield signatures predictive of multiple breast cancer phenotypes.


Subject(s)
Biomarkers, Tumor/analysis , Biopsy, Fine-Needle/methods , Breast Neoplasms/genetics , Breast Neoplasms/surgery , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Feasibility Studies , Female , Frozen Sections , Humans , Neoplasm Staging , Receptor, ErbB-2/genetics , Receptors, Estrogen/genetics , Reproducibility of Results , Sensitivity and Specificity , Surgery, Computer-Assisted
19.
Mol Cell Biol ; 28(24): 7394-401, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18852285

ABSTRACT

Erythroid Krüppel-like factor (EKLF) is a Krüppel-like transcription factor identified as a transcriptional activator and chromatin modifier in erythroid cells. EKLF-deficient (Eklf(-/-)) mice die at day 14.5 of gestation from severe anemia. In this study, we demonstrate that early progenitor cells fail to undergo terminal erythroid differentiation in Eklf(-/-) embryos. To discover potential EKLF target genes responsible for the failure of erythropoiesis, transcriptional profiling was performed with RNA from wild-type and Eklf(-/-) early erythroid progenitor cells. These analyses identified significant perturbation of a network of genes involved in cell cycle regulation, with the critical regulator of the cell cycle, E2f2, at a hub. E2f2 mRNA and protein levels were markedly decreased in Eklf(-/-) early erythroid progenitor cells, which showed a delay in the G(1)-to-S-phase transition. Chromatin immunoprecipitation analysis demonstrated EKLF occupancy at the proximal E2f2 promoter in vivo. Consistent with the role of EKLF as a chromatin modifier, EKLF binding sites in the E2f2 promoter were located in a region of EKLF-dependent DNase I sensitivity in early erythroid progenitor cells. We propose a model in which EKLF-dependent activation and modification of the E2f2 locus is required for cell cycle progression preceding terminal erythroid differentiation.


Subject(s)
Cell Cycle/physiology , Cell Differentiation/physiology , E2F2 Transcription Factor/metabolism , Erythropoiesis/physiology , Gene Expression Regulation, Developmental , Kruppel-Like Transcription Factors/metabolism , Animals , E2F2 Transcription Factor/genetics , Embryo, Mammalian/anatomy & histology , Embryo, Mammalian/physiology , Gene Expression Profiling , Gene Regulatory Networks , Kruppel-Like Transcription Factors/genetics , Liver/cytology , Liver/embryology , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Stem Cells/cytology , Stem Cells/physiology , Transcription, Genetic
20.
Dev Cell ; 15(1): 87-97, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18606143

ABSTRACT

The endoplasmic reticulum stress response, also known as the unfolded protein response (UPR), has been implicated in the normal physiology of immune defense and in several disorders, including diabetes, cancer, and neurodegenerative disease. Here, we show that the apoptotic receptor CED-1 and a network of PQN/ABU proteins involved in a noncanonical UPR response are required for proper defense to pathogen infection in Caenorhabditis elegans. A full-genome microarray analysis indicates that CED-1 functions to activate the expression of pqn/abu genes. We also show that ced-1 and pqn/abu genes are required for the survival of C. elegans exposed to live Salmonella enterica, and that overexpression of pqn/abu genes confers protection against pathogen-mediated killing. The results indicate that unfolded protein response genes, regulated in a CED-1-dependent manner, are involved in the C. elegans immune response to live bacteria.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/immunology , Genes , Immunity, Innate , Membrane Proteins/physiology , Animals , Apoptosis/genetics , Caenorhabditis elegans/microbiology , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Escherichia coli/pathogenicity , Germ Cells/metabolism , Green Fluorescent Proteins/metabolism , Membrane Proteins/genetics , Mutation , Protein Folding , RNA Interference , Salmonella enterica/pathogenicity , Survival/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...