Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
Nucleic Acids Res ; 46(D1): D794-D801, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29126249

ABSTRACT

The Encyclopedia of DNA Elements (ENCODE) Data Coordinating Center has developed the ENCODE Portal database and website as the source for the data and metadata generated by the ENCODE Consortium. Two principles have motivated the design. First, experimental protocols, analytical procedures and the data themselves should be made publicly accessible through a coherent, web-based search and download interface. Second, the same interface should serve carefully curated metadata that record the provenance of the data and justify its interpretation in biological terms. Since its initial release in 2013 and in response to recommendations from consortium members and the wider community of scientists who use the Portal to access ENCODE data, the Portal has been regularly updated to better reflect these design principles. Here we report on these updates, including results from new experiments, uniformly-processed data from other projects, new visualization tools and more comprehensive metadata to describe experiments and analyses. Additionally, the Portal is now home to meta(data) from related projects including Genomics of Gene Regulation, Roadmap Epigenome Project, Model organism ENCODE (modENCODE) and modERN. The Portal now makes available over 13000 datasets and their accompanying metadata and can be accessed at: https://www.encodeproject.org/.


Subject(s)
DNA/genetics , Databases, Genetic , Gene Components , Genomics , High-Throughput Nucleotide Sequencing , Metadata , Animals , Caenorhabditis elegans/genetics , Data Display , Datasets as Topic , Drosophila melanogaster/genetics , Forecasting , Genome, Human , Humans , Mice/genetics , User-Computer Interface
3.
PLoS One ; 12(4): e0175310, 2017.
Article in English | MEDLINE | ID: mdl-28403240

ABSTRACT

The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package.


Subject(s)
Databases, Genetic , Genomics/methods , Metadata , Software , Animals , DNA/genetics , Genome , Humans , Mice
4.
Article in English | MEDLINE | ID: mdl-26980513

ABSTRACT

The Encyclopedia of DNA Elements (ENCODE) Data Coordinating Center (DCC) is responsible for organizing, describing and providing access to the diverse data generated by the ENCODE project. The description of these data, known as metadata, includes the biological sample used as input, the protocols and assays performed on these samples, the data files generated from the results and the computational methods used to analyze the data. Here, we outline the principles and philosophy used to define the ENCODE metadata in order to create a metadata standard that can be applied to diverse assays and multiple genomic projects. In addition, we present how the data are validated and used by the ENCODE DCC in creating the ENCODE Portal (https://www.encodeproject.org/). Database URL: www.encodeproject.org.


Subject(s)
Computational Biology/methods , DNA/genetics , Databases, Genetic , Algorithms , Animals , Caenorhabditis elegans , Computational Biology/standards , Data Collection , Drosophila melanogaster , High-Throughput Nucleotide Sequencing , Humans , Mice , Nucleic Acids/genetics , Quality Control , Reproducibility of Results , Sequence Alignment
5.
Nucleic Acids Res ; 44(D1): D726-32, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26527727

ABSTRACT

The Encyclopedia of DNA Elements (ENCODE) Project is in its third phase of creating a comprehensive catalog of functional elements in the human genome. This phase of the project includes an expansion of assays that measure diverse RNA populations, identify proteins that interact with RNA and DNA, probe regions of DNA hypersensitivity, and measure levels of DNA methylation in a wide range of cell and tissue types to identify putative regulatory elements. To date, results for almost 5000 experiments have been released for use by the scientific community. These data are available for searching, visualization and download at the new ENCODE Portal (www.encodeproject.org). The revamped ENCODE Portal provides new ways to browse and search the ENCODE data based on the metadata that describe the assays as well as summaries of the assays that focus on data provenance. In addition, it is a flexible platform that allows integration of genomic data from multiple projects. The portal experience was designed to improve access to ENCODE data by relying on metadata that allow reusability and reproducibility of the experiments.


Subject(s)
Databases, Genetic , Genome, Human , Genomics , Animals , DNA/metabolism , Genes , Humans , Mice , Proteins/metabolism , RNA/metabolism
6.
Nucleic Acids Res ; 43(Database issue): D670-81, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25428374

ABSTRACT

Launched in 2001 to showcase the draft human genome assembly, the UCSC Genome Browser database (http://genome.ucsc.edu) and associated tools continue to grow, providing a comprehensive resource of genome assemblies and annotations to scientists and students worldwide. Highlights of the past year include the release of a browser for the first new human genome reference assembly in 4 years in December 2013 (GRCh38, UCSC hg38), a watershed comparative genomics annotation (100-species multiple alignment and conservation) and a novel distribution mechanism for the browser (GBiB: Genome Browser in a Box). We created browsers for new species (Chinese hamster, elephant shark, minke whale), 'mined the web' for DNA sequences and expanded the browser display with stacked color graphs and region highlighting. As our user community increasingly adopts the UCSC track hub and assembly hub representations for sharing large-scale genomic annotation data sets and genome sequencing projects, our menu of public data hubs has tripled.


Subject(s)
Databases, Nucleic Acid , Genomics , Animals , Cricetinae , Dogs , Ebolavirus/genetics , Gene Expression , Genome , Internet , Mice , Molecular Sequence Annotation , Phenotype , Rats , Software
7.
Nucleic Acids Res ; 42(Database issue): D764-70, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24270787

ABSTRACT

The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a large collection of organisms, primarily vertebrates, with an emphasis on the human and mouse genomes. The Browser's web-based tools provide an integrated environment for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic data sets. As of September 2013, the database contained genomic sequence and a basic set of annotation 'tracks' for ∼90 organisms. Significant new annotations include a 60-species multiple alignment conservation track on the mouse, updated UCSC Genes tracks for human and mouse, and several new sets of variation and ENCODE data. New software tools include a Variant Annotation Integrator that returns predicted functional effects of a set of variants uploaded as a custom track, an extension to UCSC Genes that displays haplotype alleles for protein-coding genes and an expansion of data hubs that includes the capability to display remotely hosted user-provided assembly sequence in addition to annotation data. To improve European access, we have added a Genome Browser mirror (http://genome-euro.ucsc.edu) hosted at Bielefeld University in Germany.


Subject(s)
Databases, Genetic , Genome , Genomics , Alleles , Animals , Genome, Human , Humans , Internet , Mice , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Sequence Alignment , Software
8.
Bioinformatics ; 30(7): 1003-5, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24227676

ABSTRACT

SUMMARY: Track data hubs provide an efficient mechanism for visualizing remotely hosted Internet-accessible collections of genome annotations. Hub datasets can be organized, configured and fully integrated into the University of California Santa Cruz (UCSC) Genome Browser and accessed through the familiar browser interface. For the first time, individuals can use the complete browser feature set to view custom datasets without the overhead of setting up and maintaining a mirror. AVAILABILITY AND IMPLEMENTATION: Source code for the BigWig, BigBed and Genome Browser software is freely available for non-commercial use at http://hgdownload.cse.ucsc.edu/admin/jksrc.zip, implemented in C and supported on Linux. Binaries for the BigWig and BigBed creation and parsing utilities may be downloaded at http://hgdownload.cse.ucsc.edu/admin/exe/. Binary Alignment/Map (BAM) and Variant Call Format (VCF)/tabix utilities are available from http://samtools.sourceforge.net/ and http://vcftools.sourceforge.net/. The UCSC Genome Browser is publicly accessible at http://genome.ucsc.edu.


Subject(s)
Databases, Genetic , Genome , Genomics/methods , Internet , Software
9.
Nucleic Acids Res ; 41(Database issue): D56-63, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23193274

ABSTRACT

The Encyclopedia of DNA Elements (ENCODE), http://encodeproject.org, has completed its fifth year of scientific collaboration to create a comprehensive catalog of functional elements in the human genome, and its third year of investigations in the mouse genome. Since the last report in this journal, the ENCODE human data repertoire has grown by 898 new experiments (totaling 2886), accompanied by a major integrative analysis. In the mouse genome, results from 404 new experiments became available this year, increasing the total to 583, collected during the course of the project. The University of California, Santa Cruz, makes this data available on the public Genome Browser http://genome.ucsc.edu for visual browsing and data mining. Download of raw and processed data files are all supported. The ENCODE portal provides specialized tools and information about the ENCODE data sets.


Subject(s)
Databases, Genetic , Genome, Human , Genomics , Animals , Humans , Internet , Mice , Software
10.
Nucleic Acids Res ; 41(Database issue): D64-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23155063

ABSTRACT

The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic datasets. As of September 2012, genomic sequence and a basic set of annotation 'tracks' are provided for 63 organisms, including 26 mammals, 13 non-mammal vertebrates, 3 invertebrate deuterostomes, 13 insects, 6 worms, yeast and sea hare. In the past year 19 new genome assemblies have been added, and we anticipate releasing another 28 in early 2013. Further, a large number of annotation tracks have been either added, updated by contributors or remapped to the latest human reference genome. Among these are an updated UCSC Genes track for human and mouse assemblies. We have also introduced several features to improve usability, including new navigation menus. This article provides an update to the UCSC Genome Browser database, which has been previously featured in the Database issue of this journal.


Subject(s)
Databases, Genetic , Genomics , Animals , Genome, Human , Humans , Internet , Mice , Molecular Sequence Annotation , Software
11.
Nucleic Acids Res ; 40(Database issue): D918-23, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22086951

ABSTRACT

The University of California Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analyzing and sharing both publicly available and user-generated genomic data sets. In the past year, the local database has been updated with four new species assemblies, and we anticipate another four will be released by the end of 2011. Further, a large number of annotation tracks have been either added, updated by contributors, or remapped to the latest human reference genome. Among these are new phenotype and disease annotations, UCSC genes, and a major dbSNP update, which required new visualization methods. Growing beyond the local database, this year we have introduced 'track data hubs', which allow the Genome Browser to provide access to remotely located sets of annotations. This feature is designed to significantly extend the number and variety of annotation tracks that are publicly available for visualization and analysis from within our site. We have also introduced several usability features including track search and a context-sensitive menu of options available with a right-click anywhere on the Browser's image.


Subject(s)
Databases, Nucleic Acid , Genome , Animals , Disease/genetics , Genome, Human , Genomics , Humans , Internet , Molecular Sequence Annotation , Phenotype
12.
Nucleic Acids Res ; 40(Database issue): D912-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22075998

ABSTRACT

The Encyclopedia of DNA Elements (ENCODE) Consortium is entering its 5th year of production-level effort generating high-quality whole-genome functional annotations of the human genome. The past year has brought the ENCODE compendium of functional elements to critical mass, with a diverse set of 27 biochemical assays now covering 200 distinct human cell types. Within the mouse genome, which has been under study by ENCODE groups for the past 2 years, 37 cell types have been assayed. Over 2000 individual experiments have been completed and submitted to the Data Coordination Center for public use. UCSC makes this data available on the quality-reviewed public Genome Browser (http://genome.ucsc.edu) and on an early-access Preview Browser (http://genome-preview.ucsc.edu). Visual browsing, data mining and download of raw and processed data files are all supported. An ENCODE portal (http://encodeproject.org) provides specialized tools and information about the ENCODE data sets.


Subject(s)
Databases, Nucleic Acid , Genome, Human , Genome , Mice/genetics , Animals , Humans , Internet , Molecular Sequence Annotation , Software
13.
Nucleic Acids Res ; 39(Database issue): D876-82, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20959295

ABSTRACT

The University of California, Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online access to a database of genomic sequence and annotation data for a wide variety of organisms. The Browser also has many tools for visualizing, comparing and analyzing both publicly available and user-generated genomic data sets, aligning sequences and uploading user data. Among the features released this year are a gene search tool and annotation track drag-reorder functionality as well as support for BAM and BigWig/BigBed file formats. New display enhancements include overlay of multiple wiggle tracks through use of transparent coloring, options for displaying transformed wiggle data, a 'mean+whiskers' windowing function for display of wiggle data at high zoom levels, and more color schemes for microarray data. New data highlights include seven new genome assemblies, a Neandertal genome data portal, phenotype and disease association data, a human RNA editing track, and a zebrafish Conservation track. We also describe updates to existing tracks.


Subject(s)
Databases, Genetic , Genomics , Animals , Disease/genetics , Genes , Genome, Human , Hominidae/genetics , Humans , Internet , Molecular Sequence Annotation , Phenotype , RNA Editing , Software
14.
Nucleic Acids Res ; 39(Database issue): D871-5, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21037257

ABSTRACT

The ENCODE project is an international consortium with a goal of cataloguing all the functional elements in the human genome. The ENCODE Data Coordination Center (DCC) at the University of California, Santa Cruz serves as the central repository for ENCODE data. In this role, the DCC offers a collection of high-throughput, genome-wide data generated with technologies such as ChIP-Seq, RNA-Seq, DNA digestion and others. This data helps illuminate transcription factor-binding sites, histone marks, chromatin accessibility, DNA methylation, RNA expression, RNA binding and other cell-state indicators. It includes sequences with quality scores, alignments, signals calculated from the alignments, and in most cases, element or peak calls calculated from the signal data. Each data set is available for visualization and download via the UCSC Genome Browser (http://genome.ucsc.edu/). ENCODE data can also be retrieved using a metadata system that captures the experimental parameters of each assay. The ENCODE web portal at UCSC (http://encodeproject.org/) provides information about the ENCODE data and links for access.


Subject(s)
Databases, Genetic , Genome, Human , Gene Expression Regulation , Genomics , Humans , Internet , Software , User-Computer Interface
15.
Nucleic Acids Res ; 38(Database issue): D613-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19906737

ABSTRACT

The University of California, Santa Cruz (UCSC) Genome Browser website (http://genome.ucsc.edu/) provides a large database of publicly available sequence and annotation data along with an integrated tool set for examining and comparing the genomes of organisms, aligning sequence to genomes, and displaying and sharing users' own annotation data. As of September 2009, genomic sequence and a basic set of annotation 'tracks' are provided for 47 organisms, including 14 mammals, 10 non-mammal vertebrates, 3 invertebrate deuterostomes, 13 insects, 6 worms and a yeast. New data highlights this year include an updated human genome browser, a 44-species multiple sequence alignment track, improved variation and phenotype tracks and 16 new genome-wide ENCODE tracks. New features include drag-and-zoom navigation, a Wiki track for user-added annotations, new custom track formats for large datasets (bigBed and bigWig), a new multiple alignment output tool, links to variation and protein structure tools, in silico PCR utility enhancements, and improved track configuration tools.


Subject(s)
Computational Biology/methods , Databases, Genetic , Databases, Nucleic Acid , Genome , Animals , Computational Biology/trends , Genetic Variation , Genome, Fungal , Genomics , Humans , Information Storage and Retrieval/methods , Internet , Invertebrates , Models, Molecular , Phenotype , Software
16.
Nucleic Acids Res ; 38(Database issue): D620-5, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19920125

ABSTRACT

The Encyclopedia of DNA Elements (ENCODE) project is an international consortium of investigators funded to analyze the human genome with the goal of producing a comprehensive catalog of functional elements. The ENCODE Data Coordination Center at The University of California, Santa Cruz (UCSC) is the primary repository for experimental results generated by ENCODE investigators. These results are captured in the UCSC Genome Bioinformatics database and download server for visualization and data mining via the UCSC Genome Browser and companion tools (Rhead et al. The UCSC Genome Browser Database: update 2010, in this issue). The ENCODE web portal at UCSC (http://encodeproject.org or http://genome.ucsc.edu/ENCODE) provides information about the ENCODE data and convenient links for access.


Subject(s)
Computational Biology/methods , Databases, Genetic , Databases, Nucleic Acid , Genome, Human , Animals , Cell Line, Tumor , Computational Biology/trends , Genomics , Humans , Information Storage and Retrieval/methods , Internet , Mice , Sequence Alignment , Software
17.
Genome Res ; 17(10): 1420-30, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17785536

ABSTRACT

We examined fixed substitutions in the human lineage since divergence from the common ancestor with the chimpanzee, and determined what fraction are AT to GC (weak-to-strong). Substitutions that are densely clustered on the chromosomes show a remarkable excess of weak-to-strong "biased" substitutions. These unexpected biased clustered substitutions (UBCS) are common near the telomeres of all autosomes but not the sex chromosomes. Regions of extreme bias are enriched for genes. Human and chimp orthologous regions show a striking similarity in the shape and magnitude of their respective UBCS maps, suggesting a relatively stable force leads to clustered bias. The strong and stable signal near telomeres may have participated in the evolution of isochores. One exception to the UBCS pattern found in all autosomes is chromosome 2, which shows a UBCS peak midchromosome, mapping to the fusion site of two ancestral chromosomes. This provides evidence that the fusion occurred as recently as 740,000 years ago and no more than approximately 3 million years ago. No biased clustering was found in SNPs, suggesting that clusters of biased substitutions are selected from mutations. UBCS is strongly correlated with male (and not female) recombination rates, which explains the lack of UBCS signal on chromosome X. These observations support the hypothesis that biased gene conversion (BGC), specifically in the male germline, played a significant role in the evolution of the human genome.


Subject(s)
Gene Conversion , Genome, Human , Animals , Chromosomes, Human, Pair 2/genetics , Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Evolution, Molecular , Female , Gene Fusion , Humans , Male , Models, Genetic , Pan troglodytes/genetics , Polymorphism, Single Nucleotide , Recombination, Genetic , Sex Characteristics , Species Specificity , Telomere/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...