Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Stress ; 17: 100435, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35146079

ABSTRACT

Ciliary neurotrophic factor (CNTF) is produced by astrocytes which have been implicated in regulating stress responses. We found that CNTF in the medial amygdala (MeA) promotes despair or passive coping, i.e., immobility in an acute forced swim stress, in female mice, while having no effect in males. Neutralizing CNTF antibody injected into the MeA of wildtype females reduced activation of downstream STAT3 (Y705) 24 and 48 h later. In concert, the antibody reduced immobility in the swim test in females and only after MeA injection, but not when injected in the central or basolateral amygdala. Antibody injected into the male MeA did not affect immobility. These data reveal a unique role of CNTF in female MeA in promoting despair or passive coping behavior. Moreover, 4 weeks of chronic unpredictable stress (CUS) increased immobility in the swim test and reduced sucrose preference in wildtype CNTF+/+, but not CNTF-/- littermate, females. Following CUS, 10 min of restraint stress increased plasma corticosterone levels only in CNTF+/+ females. In males, the CUS effects were present in both genotypes. Further, CUS increased CNTF expression in the MeA of female, but not male, mice. CUS did not alter CNTF in the female hippocampus, hypothalamus and bed nucleus of stria terminalis. This suggests that MeA CNTF has a female-specific role in promoting CUS-induced despair or passive coping, behavioral anhedonia and neuroendocrine responses. Compared to CNTF+/+ mice, CNTF-/- mice did not show differences in CUS-induced anxiety-like behavior and sensorimotor gating function as measured by elevated T-Maze, open field and pre-pulse inhibition of the acoustic startle response. Together, this study reveals a novel CNTF-mediated female-specific mechanism in stress responses and points to opportunities for developing treatments for stress-related disorders in women.

2.
ASN Neuro ; 13: 17590914211055064, 2021.
Article in English | MEDLINE | ID: mdl-34812056

ABSTRACT

This study investigated the effects of the pharmacological manipulation of noradrenergic activities on dopaminergic phenotypes in aged rats. Results showed that the administration of L-threo-3,4-dihydroxyphenylserine (L-DOPS) for 21 days significantly increased the expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the striatum and substantia nigra (SN) of 23-month-old rats. Furthermore, this treatment significantly increased norepinephrine/DA concentrations in the striatum and caused a deficit of sensorimotor gating as measured by prepulse inhibition (PPI). Next, old rats were injected with the α2-adrenoceptor antagonist 2-methoxy idazoxan or ß2-adrenoceptor agonist salmeterol for 21 days. Both drugs produced similar changes of TH and DAT in the striatum and SN. Moreover, treatments with L-DOPS, 2-methoxy idazoxan, or salmeterol significantly increased the protein levels of phosphorylated Akt in rat striatum and SN. However, although a combination of 2-methoxy idazoxan and salmeterol resulted in a deficit of PPI in these rats, the administration of 2-methoxy idazoxan alone showed an opposite behavioral change. The in vitro experiments revealed that treatments with norepinephrine markedly increased mRNAs and proteins of ATF2 and CBP/p300 and reduced mRNA and proteins of HDAC2 and HDAC5 in MN9D cells. A ChIP assay showed that norepinephrine significantly increased CBP/p300 binding or reduced HDAC2 and HDAC5 binding on the TH promoter. The present results indicate that facilitating noradrenergic activity in the brain can improve the functions of dopaminergic neurons in aged animals. While this improvement may have biochemically therapeutic indication for the status involving the degeneration of dopaminergic neurons, it may not definitely include behavioral improvements, as indicated by using 2-methoxy idazoxan only.


Subject(s)
Dopamine , Norepinephrine , Animals , Histone Deacetylases , Phenotype , Rats , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
3.
Sci Total Environ ; 648: 25-32, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30107303

ABSTRACT

A novel dual excitation wavelength based bioaerosol sensor with multiple fluorescence bands called Spectral Intensity Bioaerosol Sensor (SIBS) has been assessed across five contrasting outdoor environments. The mean concentrations of total and fluorescent particles across the sites were highly variable being the highest at the agricultural farm (2.6 cm-3 and 0.48 cm-3, respectively) and the composting site (2.32 cm-3 and 0.46 cm-3, respectively) and the lowest at the dairy farm (1.03 cm-3 and 0.24 cm-3, respectively) and the sewage treatment works (1.03 cm-3 and 0.25 cm-3, respectively). In contrast, the number-weighted fluorescent fraction was lowest at the agricultural site (0.18) in comparison to the other sites indicating high variability in nature and magnitude of emissions from environmental sources. The fluorescence emissions data demonstrated that the spectra at different sites were multimodal with intensity differences largely at wavelengths located in secondary emission peaks for λex 280 and λex 370. This finding suggests differences in the molecular composition of emissions at these sites which can help to identify distinct fluorescence signature of different environmental sources. Overall this study demonstrated that SIBS provides additional spectral information compared to existing instruments and capability to resolve spectrally integrated signals from relevant biological fluorophores could improve selectivity and thus enhance discrimination and classification strategies for real-time characterisation of bioaerosols from environmental sources. However, detailed lab-based measurements in conjunction with real-world studies and improved numerical methods are required to optimise and validate these highly resolved spectral signatures with respect to the diverse atmospherically relevant biological fluorophores.

4.
Schizophr Res ; 194: 107-114, 2018 04.
Article in English | MEDLINE | ID: mdl-28314679

ABSTRACT

This study analyzed the associative properties of nicotine in a conditioned place preference (CPP) paradigm in adolescent rats neonatally treated with quinpirole (NQ) or saline (NS). NQ produces dopamine D2 receptor supersensitivity that persists throughout the animal's lifetime, and therefore has relevance towards schizophrenia. In two experiments, rats were ip administered quinpirole (1mg/kg) or saline from postnatal day (P)1-21. After an initial preference test at P42-43, animals were conditioned for eight consecutive days with saline or nicotine (0.6mg/kg free base) in Experiment 1 or saline or nicotine (1.8mg/kg free base) in Experiment 2. In addition, there were NQ and NS groups in each experiment given the antipsychotic haloperidol (0.05mg/kg) or clozapine (2.5mg/kg) before nicotine conditioning. A drug free post-conditioning test was administered at P52. At P53, the nucleus accumbens (NAc) was analyzed for glial cell-line derived neurotrophic factor (GDNF). Results revealed that NQ enhanced nicotine CPP, but blunted the aversive properties of nicotine. Haloperidol was more effective than clozapine at blocking nicotine CPP in Experiment 1, but neither antipsychotic affected nicotine conditioned place aversion in Experiment 2. NQ increased accumbal GDNF which was sensitized in NQ rats conditioned to nicotine in Experiment 1, but the aversive dose of nicotine reduced GDNF in NQ animals in Experiment 2. Both antipsychotics in combination with the aversive dose of nicotine decreased accumbal GDNF. In sum, increased D2 receptor sensitivity influenced the associative properties and GDNF response to nicotine which has implications towards pharmacological targets for smoking cessation in schizophrenia.


Subject(s)
Association , Avoidance Learning/drug effects , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Reward , Tobacco Use Disorder/metabolism , Tobacco Use Disorder/psychology , Animals , Animals, Newborn , Antipsychotic Agents/pharmacology , Clozapine/pharmacology , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Haloperidol/pharmacology , Male , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Nucleus Accumbens/pathology , Quinpirole , Spatial Behavior/drug effects , Spatial Behavior/physiology , Tobacco Use Disorder/pathology
5.
Environ Toxicol Chem ; 30(3): 602-6, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21154847

ABSTRACT

Because of the lack of effective methodology, the biological effects of environmental endotoxin have not been assessed. Here we have collected and measured airborne endotoxin at different locations around composting sites. Increased endotoxin concentrations were observed close to composting activities and also at nearby boundary areas. Analysis of proinflammatory effects of the environmental endotoxin on interleukin (IL)-8 and IL-6 release from human D562 pharyngeal epithelial and MM6 monocytic cell cultures showed an association between endotoxin level and cytokine induction. The cytokine-inducing effect of bioaerosol extracts was inhibited by polymyxin B, indicating that endotoxin was the cause of cytokine responses we found. The environmental endotoxin was also more active for stimulating cytokines in airway epithelial cells than commercially purified Escherichia coli endotoxin. Our results suggest that these in vitro inflammatory cell models may contribute to the assessment of health impacts of environmental endotoxin.


Subject(s)
Air Pollutants/toxicity , Endotoxins/toxicity , Inflammation/metabolism , Respiratory Mucosa/drug effects , Biodegradation, Environmental , Cell Line , Humans , Inflammation/chemically induced , Interleukin-6/metabolism , Interleukin-8/metabolism , Models, Biological , Respiratory Mucosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...