Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mass Spectrom Adv Clin Lab ; 22: 34-42, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34939053

ABSTRACT

Large epidemiological studies often require sample transportation and storage, presenting unique considerations when applying advanced lipidomics techniques. The goal of this study was to acquire lipidomics data on plasma and serum samples stored at potential preanalytical conditions (e.g., thawing, extracting, evaporating), systematically monitoring lipid species for a period of one month. Split aliquots of 10 plasma samples and 10 serum samples from healthy individuals were kept in three temperature-related environments: refrigerator, laboratory benchtop, or heated incubator. Samples were analyzed at six different time points over 28 days using a Bligh & Dyer lipid extraction protocol followed by direct infusion into a lipidomics platform using differential mobility with tandem mass spectrometry. The observed concentration changes over time were evaluated relative to method and inter-individual biological variability. In addition, to evaluate the effect of lipase enzyme levels on concentration changes during storage, we compared corresponding fasting and post-prandial plasma samples collected from 5 individuals. Based on our data, a series of low abundance free fatty acid (FFA), diacylglycerol (DAG), and cholesteryl ester (CE) species were identified as potential analytical markers for degradation. These FFA and DAG species are typically produced by endogenous lipases from numerous triacylglycerols (TAGs), and certain high abundance phosphatidylcholines (PCs). The low concentration CEs, which appeared to increase several fold, were likely mass-isobars from oxidation of other high concentration CEs. Although the concentration changes of the high abundant TAG, PC, and CE precursors remained within method variability, the concentration trends of FFA, DAG, and oxidized CE products should be systematically monitored over time to inform analysts about possible pre-analytical biases due to degradation in the study sample sets.

2.
Nanotoxicology ; 15(6): 740-760, 2021 08.
Article in English | MEDLINE | ID: mdl-34087078

ABSTRACT

Evaluating the potential occupational health risk of engineered nanomaterials is an ongoing need. The objective of this meta-analysis, which consisted of 36 studies containing 86 materials, was to assess the availability of published in vivo rodent pulmonary toxicity data for a variety of nanoscale and microscale materials and to derive potency estimates via benchmark dose modeling. Additionally, the potency estimates based on particle mass lung dose associated with acute pulmonary inflammation were used to group materials based on toxicity. The commonalities among the physicochemical properties of the materials in each group were also explored. This exploration found that a material's potency tended to be associated primarily with the material class based on chemical composition and form (e.g. carbon nanotubes, TiO2, ZnO) rather than with particular physicochemical properties. Limitations in the data available precluded a more extensive analysis of these associations. Issues such as data reporting and appropriate experimental design for use in quantitative risk assessment are the main reasons publications were excluded from these analyses and are discussed.


Subject(s)
Lung Diseases , Nanostructures , Nanotubes, Carbon , Animals , Risk Assessment , Rodentia
3.
Regul Toxicol Pharmacol ; 89: 253-267, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28789940

ABSTRACT

The large and rapidly growing number of engineered nanomaterials (ENMs) presents a challenge to assessing the potential occupational health risks. An initial database of 25 rodent studies including 1929 animals across various experimental designs and material types was constructed to identify materials that are similar with respect to their potency in eliciting neutrophilic pulmonary inflammation, a response relevant to workers. Doses were normalized across rodent species, strain, and sex as the estimated deposited particle mass dose per gram of lung. Doses associated with specific measures of pulmonary inflammation were estimated by modeling the continuous dose-response relationships using benchmark dose modeling. Hierarchical clustering was used to identify similar materials. The 18 nanoscale and microscale particles were classified into four potency groups, which varied by factors of approximately two to 100. Benchmark particles microscale TiO2 and crystalline silica were in the lowest and highest potency groups, respectively. Random forest methods were used to identify the important physicochemical predictors of pulmonary toxicity, and group assignments were correctly predicted for five of six new ENMs. Proof-of-concept was demonstrated for this framework. More comprehensive data are needed for further development and validation for use in deriving categorical occupational exposure limits.


Subject(s)
Lung/drug effects , Nanostructures/toxicity , Occupational Exposure , Animals , Silicon Dioxide , Titanium/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...