Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 9(1): e0031121, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34287030

ABSTRACT

Bacillus mycoides is poorly known despite its frequent occurrence in a wide variety of environments. To provide direct insight into its ecology and evolutionary history, a comparative investigation of the species pan-genome and the functional gene categorization of 35 isolates obtained from soil samples from northeastern Poland was performed. The pan-genome of these isolates is composed of 20,175 genes and is characterized by a strong predominance of adaptive genes (∼83%), a significant amount of plasmid genes (∼37%), and a great contribution of prophages and insertion sequences. The pan-genome structure and phylodynamic studies had suggested a wide genomic diversity among the isolates, but no correlation between lineages and the bacillus origin was found. Nevertheless, the two B. mycoides populations, one from Bialowieza National Park, the last European natural primeval forest with soil classified as organic, and the second from mineral soil samples taken in a farm in Jasienówka, a place with strong anthropogenic pressure, differ significantly in the frequency of genes encoding proteins enabling bacillus adaptation to specific stress conditions and production of a set of compounds, thus facilitating their colonization of various ecological niches. Furthermore, differences in the prevalence of essential stress sigma factors might be an important trail of this process. Due to these numerous adaptive genes, B. mycoides is able to quickly adapt to changing environmental conditions. IMPORTANCE This research allows deeper understanding of the genetic organization of natural bacterial populations, specifically, Bacillus mycoides, a psychrotrophic member of the Bacillus cereus group that is widely distributed worldwide, especially in areas with continental cold climates. These thorough analyses made it possible to describe, for the first time, the B. mycoides pan-genome, phylogenetic relationship within this species, and the mechanisms behind the species ecology and evolutionary history. Our study indicates a set of functional properties and adaptive genes, in particular, those encoding sigma factors, associated with B. mycoides acclimatization to specific ecological niches and changing environmental conditions.


Subject(s)
Bacillus/genetics , Bacillus/physiology , Biological Evolution , Ecology , Anthropogenic Effects , Bacillus/classification , Bacillus/isolation & purification , DNA Transposable Elements , Genome, Bacterial , Genomics , High-Throughput Nucleotide Sequencing , Phylogeny , Plasmids/genetics , Sigma Factor , Soil , Soil Microbiology , Species Specificity
3.
Sci Rep ; 7: 46430, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28406161

ABSTRACT

In this study we reconstructed the architecture of Bacillus cereus sensu lato population based on ribosomal proteins, and identified a link between the ribosomal proteins' variants and thermal groups (thermotypes) of the bacilli. The in silico phyloproteomic analysis of 55 ribosomal proteins (34 large and 21 small subunit r-proteins) of 421 strains, representing 14 well-established or plausible B. cereus sensu lato species, revealed several ribosomal clusters (r-clusters), which in general were well correlated with the strains' affiliation to phylogenetic/thermal groups I-VII. However, a conformity and possibly a thermal characteristic of certain phylogenetic groups, e.g. the group IV, were not supported by a distribution of the corresponding r-clusters, and consequently neither by the analysis of cold-shock proteins (CSPs) nor by a content of heat shock proteins (HSPs). Furthermore, a preference for isoleucine and serine over valine and alanine in r-proteins along with a lack of HSP16.4 were recognized in non-mesophilic thermotypes. In conclusion, we suggest that the observed divergence in ribosomal proteins may be connected with an adaptation of B. cereus sensu lato members to various thermal niches.


Subject(s)
Bacillus cereus/classification , Proteomics/methods , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Adaptation, Physiological , Bacillus cereus/genetics , Bacillus cereus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Computer Simulation , Genetic Variation , Phylogeny , Ribosomes/genetics , Ribosomes/metabolism
4.
PLoS One ; 10(4): e0125428, 2015.
Article in English | MEDLINE | ID: mdl-25909751

ABSTRACT

Although melanin is known for protecting living organisms from harmful physical and chemical factors, its synthesis is rarely observed among endospore-forming Bacillus cereus sensu lato. Here, for the first time, we reported that psychrotolerant Bacillus weihenstephanensis from Northeastern Poland can produce melanin-like pigment. We assessed physicochemical properties of the pigment and the mechanism of its synthesis in relation to B. weihenstephanensis genotypic and phenotypic characteristics. Electron paramagnetic resonance (EPR) spectroscopy displayed a stable free radical signal of the pigment from environmental isolates which are consistent with the commercial melanin. Fourier transform infrared spectroscopy (FT-IR) and physicochemical tests indicated the phenolic character of the pigment. Several biochemical tests showed that melanin-like pigment synthesis by B. weihenstephanensis was associated with laccase activity. The presence of the gene encoding laccase was confirmed by the next generation whole genome sequencing of one B. weihenstephanensis strain. Biochemical (API 20E and 50CHB tests) and genetic (Multi-locus Sequence Typing, 16S rRNA sequencing, and Pulsed-Field Gel Electrophoresis) characterization of the isolates revealed their close relation to the psychrotrophic B. weihenstephanensis DSMZ 11821 reference strain. The ability to synthesize melanin-like pigment by soil B. weihenstephanensis isolates and their psychrotrophic character seemed to be a local adaptation to a specific niche. Detailed genetic and biochemical analyses of melanin-positive environmental B. weihenstephanensis strains shed some light on the evolution and ecological adaptation of these bacteria. Moreover, our study raised new biotechnological possibilities for the use of water-soluble melanin-like pigment naturally produced by B. weihenstephanensis as an alternative to commercial non-soluble pigment.


Subject(s)
Bacillus/genetics , Melanins/biosynthesis , Pigments, Biological/biosynthesis , Bacterial Proteins/genetics , Chemical Phenomena , DNA, Bacterial/genetics , Poland , RNA, Ribosomal, 16S/genetics , Soil , Soil Microbiology
5.
PLoS One ; 8(12): e80175, 2013.
Article in English | MEDLINE | ID: mdl-24312460

ABSTRACT

The Bacillus cereus group, which includes entomopathogens and etiologic agents of foodborne illness or anthrax, persists in various environments. The basis of their ecological diversification remains largely undescribed. Here we present the genetic structure and phylogeny of 273 soil B. cereus s.l. isolates from diverse habitats in northeastern Poland, with samplings acquired from the last European natural forest (Bialowieza National Park), the largest marshes in Europe (Biebrza National Park), and a farm. In multi-locus sequence typing (MLST), despite negative selection in seven housekeeping loci, the isolates exhibited high genetic diversity (325 alleles), mostly resulting from mutation events, and represented 148 sequencing types (131 STs new and 17 STs already described) grouped into 19 complexes corresponding with bacterial clones, and 80 singletons. Phylogenetic analyses showed that 74% of the isolates clustered with B. cereus s.l. environmental references (clade III), while only 11 and 15%, respectively, grouped with isolates of clinical origin (clade I), and B. cereus ATCC 14579 and reference B. thuringiensis (clade II). Predominantly within clade III, we found lineages adapted to low temperature (thermal ecotypes), while putative toxigenic isolates (cytK-positive) were scattered in all clades of the marsh and farm samplings. The occurrence of 92% of STs in bacilli originating from one habitat, and the description of new STs for 78% of the isolates, strongly indicate the existence of specific genotypes within the natural B. cereus s.l. populations. In contrast to the human-associated B. cereus s.l. that exhibit a significant level of similarity, the environmental isolates appear more complex. Thus we propose dividing B. cereus s.l. into two groups, the first including environmental isolates, and the second covering those that are of clinical relevance.


Subject(s)
Bacillus cereus/genetics , Bacillus cereus/isolation & purification , Trees/microbiology , Water Microbiology , Humans , Poland , Soil Microbiology
6.
FEMS Microbiol Ecol ; 85(2): 262-72, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23521504

ABSTRACT

Ecological diversification of Bacillus thuringiensis soil isolates was examined to determine whether bacteria adapted to grow at low temperature and/or potentially pathogenic correspond to genetically distinct lineages. Altogether, nine phylogenetic lineages were found among bacilli originating from North-Eastern Poland (n = 24) and Lithuania (n = 25) using multi-locus sequence typing. This clustering was chiefly confirmed by pulsed-field gel electrophoresis. One third of the bacilli were found to be psychrotolerant, which strongly supports the hypothesis of the existence of thermal ecotypes among B. thuringiensis. PCR screening was also performed to detect potential enterotoxin genes and Bacillus anthracis pXO1- and pXO2-like replicons. The cytK-positive isolates (22%) were significantly associated with two phylogenetic lineages (potential CytK pathotypes), whereas there was no correlation between phylogenetic grouping and the presence of the potential tripartite enterotoxin pathotypes (86% of strains). A statistically significant association between phylogenetic lineages and ecologic properties was found with regard to the cry1-positive Lithuanian isolates, while the cry genes in Polish isolates and the pXO1- and pXO2 replicon-like elements showed scattered distribution across phylogenetic lineages. Our results support the hypothesis that B. thuringiensis comprises strains belonging to different phylogenetic lineages, which exhibit specific ecological properties.


Subject(s)
Bacillus thuringiensis/classification , Soil Microbiology , Bacillus anthracis/genetics , Bacillus thuringiensis/genetics , Bacillus thuringiensis/isolation & purification , Ecotype , Electrophoresis, Gel, Pulsed-Field , Enterotoxins/genetics , Genetic Variation , Lithuania , Multilocus Sequence Typing , Phylogeny , Poland , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...