Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 21(3): 265-278, 2021 03.
Article in English | MEDLINE | ID: mdl-33216655

ABSTRACT

It is unknown how abundant extraterrestrial life is, or whether such life might be complex or intelligent. On Earth, the emergence of complex intelligent life required a preceding series of evolutionary transitions such as abiogenesis, eukaryogenesis, and the evolution of sexual reproduction, multicellularity, and intelligence itself. Some of these transitions could have been extraordinarily improbable, even in conducive environments. The emergence of intelligent life late in Earth's lifetime is thought to be evidence for a handful of rare evolutionary transitions, but the timing of other evolutionary transitions in the fossil record is yet to be analyzed in a similar framework. Using a simplified Bayesian model that combines uninformative priors and the timing of evolutionary transitions, we demonstrate that expected evolutionary transition times likely exceed the lifetime of Earth, perhaps by many orders of magnitude. Our results corroborate the original argument suggested by Brandon Carter that intelligent life in the Universe is exceptionally rare, assuming that intelligent life elsewhere requires analogous evolutionary transitions. Arriving at the opposite conclusion would require exceptionally conservative priors, evidence for much earlier transitions, multiple instances of transitions, or an alternative model that can explain why evolutionary transitions took hundreds of millions of years without appealing to rare chance events. Although the model is simple, it provides an initial basis for evaluating how varying biological assumptions and fossil record data impact the probability of evolving intelligent life, and also provides a number of testable predictions, such as that some biological paradoxes will remain unresolved and that planets orbiting M dwarf stars are uninhabitable.


Subject(s)
Exobiology , Planets , Bayes Theorem , Biological Evolution , Earth, Planet , Extraterrestrial Environment , Intelligence
2.
Biopolymers ; 96(5): 537-44, 2011.
Article in English | MEDLINE | ID: mdl-22180902

ABSTRACT

Methods for facile synthesis of extraordinarily diverse peptide-like oligomers have placed peptoids at the center of a broad and vibrant area of foldamer science and technology. The 7th Peptoid Summit offered a perspective on the current state of peptoid science and technology and on prospects for engineering supramolecular assemblies that rival the complexity of biomolecular systems. Methods for engineering biomolecular systems based on DNA and protein are advancing rapidly, building a technology platform for engineering increasingly large and complex self-assembled nanosystems. A comparative review of the physical basis for DNA, protein, and peptoid engineering indicates that the characteristics of peptoids suit them for a strong role in developing self-assembled nanosystems. Physical parallels between peptoids and proteins indicate that peptoid engineering, like protein engineering, will require specialized software to support design. Access to novel side-chain functionality will enable peptoid designers to exploit novel binding interactions, including many that have been discovered and exploited in crystal engineering, a field that has extensively explored the self-assembly of small organic molecules to form well-ordered structures. Developments in DNA, protein, and inorganic nanotechnologies are converging to provide a technology platform for the design and fabrication of complex, functional, atomically precise nanosystems. Peptoid-based foldamer technologies, can contribute to this convergence, expanding the scope of the emerging field of atomically precise macromolecular nanosystems.


Subject(s)
Peptoids/chemistry , Protein Engineering , Drug Design , Humans
4.
Nature ; 422(6929): 257, 2003 Mar 20.
Article in English | MEDLINE | ID: mdl-12646892
SELECTION OF CITATIONS
SEARCH DETAIL
...