Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Stroke ; 53(4): 1411-1422, 2022 04.
Article in English | MEDLINE | ID: mdl-35164533

ABSTRACT

Translation of acute ischemic stroke research to the clinical setting remains limited over the last few decades with only one drug, recombinant tissue-type plasminogen activator, successfully completing the path from experimental study to clinical practice. To improve the selection of experimental treatments before testing in clinical studies, the use of large gyrencephalic animal models of acute ischemic stroke has been recommended. Currently, these models include, among others, dogs, swine, sheep, and nonhuman primates that closely emulate aspects of the human setting of brain ischemia and reperfusion. Species-specific characteristics, such as the cerebrovascular architecture or pathophysiology of thrombotic/ischemic processes, significantly influence the suitability of a model to address specific research questions. In this article, we review key characteristics of the main large animal models used in translational studies of acute ischemic stroke, regarding (1) anatomy and physiology of the cerebral vasculature, including brain morphology, coagulation characteristics, and immune function; (2) ischemic stroke modeling, including vessel occlusion approaches, reproducibility of infarct size, procedural complications, and functional outcome assessment; and (3) implementation aspects, including ethics, logistics, and costs. This review specifically aims to facilitate the selection of the appropriate large animal model for studies on acute ischemic stroke, based on specific research questions and large animal model characteristics.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Animals , Brain Ischemia/therapy , Disease Models, Animal , Dogs , Humans , Reproducibility of Results , Sheep , Swine , Tissue Plasminogen Activator
2.
Front Neurosci ; 14: 272, 2020.
Article in English | MEDLINE | ID: mdl-32372897

ABSTRACT

Gut integrity impairment leading to increased intestinal permeability (IP) is hypothesized to be a trigger of critically illness. Approximately 15-20% of human ischemic stroke (IS) victims require intensive care, including patients with impaired level of consciousness or a high risk for developing life-threatening cerebral edema. Local and systemic inflammatory reactions are a major component of the IS pathophysiology and can significantly aggravate brain tissue damage. Intracerebral inflammatory processes following IS have been well studied. Until now, less is known about systemic inflammatory responses and IS consequences apart from a frequently observed post-IS immunosuppression. Here, we provide a hypothesis of a crosstalk between systemic acute phase response (APR), IP and potential secondary brain damage during acute and subacute IS stages supported by preliminary experimental data. Alterations of the acute phase proteins (APPs) C-reactive protein and lipopolysaccharide-binding protein and serum level changes of antibodies directed against Escherichia coli-cell extract antigen (IgA-, IgM-, and IgG-anti-E. coli) were investigated at 1, 2, and 7 days following IS in ten male sheep. We found an increase of both APPs as well as a decrease of all anti-E. coli antibodies within 48 h following IS. This may indicate an early systemic APR and increased IP, and underlines the importance of the increasingly recognized gut-brain axis and of intestinal antigen release for systemic immune responses in acute and subacute stroke stages.

3.
Front Neurosci ; 13: 1092, 2019.
Article in English | MEDLINE | ID: mdl-31680827

ABSTRACT

Magnetic resonance imaging (MRI) provides a unique tool for in vivo visualization and tracking of stem cells in the brain. This is of particular importance when assessing safety of experimental cell treatments in the preclinical or clinical setup. Yet, specific imaging requires an efficient and non-perturbing cellular magnetic labeling which precludes adverse effects of the tag, e.g., the impact of iron-oxide-nanoparticles on the critical differentiation and integration processes of the respective stem cell population investigated. In this study we investigated the effects of very small superparamagnetic iron oxide particle (VSOP) labeling on viability, stemness, and neuronal differentiation potential of primary human adult neural stem cells (haNSCs). Cytoplasmic VSOP incorporation massively reduced the transverse relaxation time T2, an important parameter determining MR contrast. Cells retained cytoplasmic label for at least a month, indicating stable incorporation, a necessity for long-term imaging. Using a clinical 3T MRI, 1 × 103 haNSCs were visualized upon injection in a gel phantom, but detection limit was much lower (5 × 104 cells) in layer phantoms and using an imaging protocol feasible in a clinical scenario. Transcriptional analysis and fluorescence immunocytochemistry did not reveal a detrimental impact of VSOP labeling on important parameters of cellular physiology with cellular viability, stemness and neuronal differentiation potential remaining unaffected. This represents a pivotal prerequisite with respect to clinical application of this method.

4.
J Cereb Blood Flow Metab ; 39(12): 2521-2535, 2019 12.
Article in English | MEDLINE | ID: mdl-30239258

ABSTRACT

Intracerebral hemorrhage (ICH) is an important stroke subtype, but preclinical research is limited by a lack of translational animal models. Large animal models are useful to comparatively investigate key pathophysiological parameters in human ICH. To (i) establish an acute model of moderate ICH in adult sheep and (ii) an advanced neuroimage processing pipeline for automatic brain tissue and hemorrhagic lesion determination; 14 adult sheep were assigned for stereotactically induced ICH into cerebral white matter under physiological monitoring. Six hours after ICH neuroimaging using 1.5T MRI including structural as well as perfusion and diffusion, weighted imaging was performed before scarification and subsequent neuropathological investigation including immunohistological staining. Controlled, stereotactic application of autologous blood caused a space-occupying intracerebral hematoma of moderate severity, predominantly affecting white matter at 5 h post-injection. Neuroimage post-processing including lesion probability maps enabled automatic quantification of structural alterations including perilesional diffusion and perfusion restrictions. Neuropathological and immunohistological investigation confirmed perilesional vacuolation, axonal damage, and perivascular blood as seen after human ICH. The model and imaging platform reflects key aspects of human ICH and enables future translational research on hematoma expansion/evacuation, white matter changes, hematoma evacuation, and other aspects.


Subject(s)
Cerebral Hemorrhage , Image Processing, Computer-Assisted , Neuroimaging , White Matter , Animals , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/physiopathology , Disease Models, Animal , Female , Humans , Male , Sheep , White Matter/blood supply , White Matter/diagnostic imaging , White Matter/physiopathology
5.
Cell Mol Immunol ; 14(2): 146-179, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27721455

ABSTRACT

Almost every experimental treatment strategy using non-autologous cell, tissue or organ transplantation is tested in small and large animal models before clinical translation. Because these strategies require immunosuppression in most cases, immunosuppressive protocols are a key element in transplantation experiments. However, standard immunosuppressive protocols are often applied without detailed knowledge regarding their efficacy within the particular experimental setting and in the chosen model species. Optimization of such protocols is pertinent to the translation of experimental results to human patients and thus warrants further investigation. This review summarizes current knowledge regarding immunosuppressive drug classes as well as their dosages and application regimens with consideration of species-specific drug metabolization and side effects. It also summarizes contemporary knowledge of novel immunomodulatory strategies, such as the use of mesenchymal stem cells or antibodies. Thus, this review is intended to serve as a state-of-the-art compendium for researchers to refine applied experimental immunosuppression and immunomodulation strategies to enhance the predictive value of preclinical transplantation studies.


Subject(s)
Biomedical Research/methods , Immunosuppression Therapy , Animals , Humans , Immunomodulation , Immunosuppressive Agents/therapeutic use , Transplantation
6.
EJNMMI Phys ; 3(1): 2, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26872658

ABSTRACT

BACKGROUND: Obtaining the arterial input function (AIF) from image data in dynamic positron emission tomography (PET) examinations is a non-invasive alternative to arterial blood sampling. In simultaneous PET/magnetic resonance imaging (PET/MRI), high-resolution MRI angiographies can be used to define major arteries for correction of partial-volume effects (PVE) and point spread function (PSF) response in the PET data. The present study describes a fully automated method to obtain the image-derived input function (IDIF) in PET/MRI. Results are compared to those obtained by arterial blood sampling. METHODS: To segment the trunk of the major arteries in the neck, a high-resolution time-of-flight MRI angiography was postprocessed by a vessel-enhancement filter based on the inertia tensor. Together with the measured PSF of the PET subsystem, the arterial mask was used for geometrical deconvolution, yielding the time-resolved activity concentration averaged over a major artery. The method was compared to manual arterial blood sampling at the hind leg of 21 sheep (animal stroke model) during measurement of blood flow with O15-water. Absolute quantification of activity concentration was compared after bolus passage during steady state, i.e., between 2.5- and 5-min post injection. Cerebral blood flow (CBF) values from blood sampling and IDIF were also compared. RESULTS: The cross-calibration factor obtained by comparing activity concentrations in blood samples and IDIF during steady state is 0.98 ± 0.10. In all examinations, the IDIF provided a much earlier and sharper bolus peak than in the time course of activity concentration obtained by arterial blood sampling. CBF using the IDIF was 22 % higher than CBF obtained by using the AIF yielded by blood sampling. CONCLUSIONS: The small deviation between arterial blood sampling and IDIF during steady state indicates that correction of PVE and PSF is possible with the method presented. The differences in bolus dynamics and, hence, CBF values can be explained by the different sampling locations (hind leg vs. major neck arteries) with differences in delay/dispersion. It will be the topic of further work to test the method on humans with the perspective of replacing invasive blood sampling by an IDIF using simultaneous PET/MRI.

7.
PLoS One ; 8(5): e62644, 2013.
Article in English | MEDLINE | ID: mdl-23667503

ABSTRACT

OBJECTIVES: This study aimed to evaluate the detectability of stem cells labeled with very small iron oxide particles (VSOP) at 3T with susceptibility weighted (SWI) and T2* weighted imaging as a methodological basis for subsequent examinations in a large animal stroke model (sheep). MATERIALS AND METHODS: We examined ovine mesenchymal stem cells labeled with VSOP in agarose layer phantoms. The experiments were performed in 2 different groups, with quantities of 0-100,000 labeled cells per layer. 15 different SWI- and T2*-weighted sequences and 3 RF coils were used. All measurements were carried out on a clinical 3T MRI. Images of Group A were analyzed by four radiologists blinded for the number of cells, and rated for detectability according to a four-step scale. Images of Group B were subject to a ROI-based analysis of signal intensities. Signal deviations of more than the 0.95 confidence interval in cell containing layers as compared to the mean of the signal intensity of non cell bearing layers were considered significant. GROUP A: 500 or more labeled cells were judged as confidently visible when examined with a SWI-sequence with 0.15 mm slice thickness. Group B: 500 or more labeled cells showed a significant signal reduction in SWI sequences with a slice thickness of 0.25 mm. Slice thickness and cell number per layer had a significant influence on the amount of detected signal reduction. CONCLUSION: 500 VSOP labeled stem cells could be detected with SWI imaging at 3 Tesla using an experimental design suitable for large animal models.


Subject(s)
Disease Models, Animal , Ferric Compounds/metabolism , Magnetic Resonance Imaging/methods , Mesenchymal Stem Cells/ultrastructure , Sheep , Stem Cell Transplantation/methods , Stroke/therapy , Animals , Limit of Detection , Mesenchymal Stem Cells/metabolism , Particle Size , Phantoms, Imaging , Sepharose , Staining and Labeling/methods
8.
J Cereb Blood Flow Metab ; 28(12): 1951-64, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18698332

ABSTRACT

As effective stroke treatment by thrombolysis is bound to a narrow time window excluding most patients, numerous experimental treatment strategies have been developed to gain new options for stroke treatment. However, all approaches using neuroprotective agents that have been successfully evaluated in rodents have subsequently failed in clinical trials. Existing large animal models are of significant scientific value, but sometimes limited by ethical drawbacks and mostly do not allow for long-term observation. In this study, we are introducing a simple, but reliable stroke model using permanent middle cerebral artery occlusion in sheep. This model allows for control of ischemic lesion size and subsequent neurofunctional impact, and it is monitored by behavioral phenotyping, magnetic resonance imaging, and positron emission tomography. Neuropathologic and (immuno)histologic investigations showed typical ischemic lesion patterns whereas commercially available antibodies against vascular, neuronal, astroglial, and microglial antigens were feasible for ovine brain specimens. Based on absent mortality in this study and uncomplicated species-appropriate housing, long-term studies can be realized with comparatively low expenditures. This model could be used as an alternative to existing large animal models, especially for longitudinal analyses of the safety and therapeutic impact of novel therapies in the field of translational stroke research.


Subject(s)
Arterial Occlusive Diseases , Brain Ischemia , Disease Models, Animal , Middle Cerebral Artery , Sheep , Animals , Arterial Occlusive Diseases/complications , Arterial Occlusive Diseases/pathology , Arterial Occlusive Diseases/physiopathology , Behavior, Animal/physiology , Brain/blood supply , Brain/diagnostic imaging , Brain/pathology , Brain Ischemia/etiology , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Cerebral Angiography , Fluorescent Antibody Technique , Immunohistochemistry , Magnetic Resonance Imaging , Male , Microscopy, Confocal , Microscopy, Fluorescence , Middle Cerebral Artery/diagnostic imaging , Middle Cerebral Artery/pathology , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...