Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Res Protoc ; 4(4): e137, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26685289

ABSTRACT

BACKGROUND: Indices of global tissue oxygen delivery and utilization such as mixed venous oxygen saturation, serum lactate concentration, and arterial hematocrit are commonly used to determine the adequacy of tissue oxygenation during cardiopulmonary bypass (CPB). However, these global measures may not accurately reflect regional tissue oxygenation and ischemic organ injury remains a common and serious complication of CPB. Near-infrared spectroscopy (NIRS) is a noninvasive technology that measures regional tissue oxygenation. NIRS may be used alongside global measures to optimize regional perfusion and reduce organ injury. It may also be used as an indicator of the need for red blood cell transfusion in the presence of anemia and tissue hypoxia. However, the clinical benefits of using NIRS remain unclear and there is a lack of high-quality evidence demonstrating its efficacy and cost effectiveness. OBJECTIVE: The aim of the patient-specific cerebral oxygenation monitoring as part of an algorithm to reduce transfusion during heart valve surgery (PASPORT) trial is to determine whether the addition of NIRS to CPB management algorithms can prevent cognitive decline, postoperative organ injury, unnecessary transfusion, and reduce health care costs. METHODS: Adults aged 16 years or older undergoing valve or combined coronary artery bypass graft and valve surgery at one of three UK cardiac centers (Bristol, Hull, or Leicester) are randomly allocated in a 1:1 ratio to either a standard algorithm for optimizing tissue oxygenation during CPB that includes a fixed transfusion threshold, or a patient-specific algorithm that incorporates cerebral NIRS monitoring and a restrictive red blood cell transfusion threshold. Allocation concealment, Internet-based randomization stratified by operation type and recruiting center, and blinding of patients, ICU and ward care staff, and outcome assessors reduce the risk of bias. The primary outcomes are cognitive function 3 months after surgery and infectious complications during the first 3 months after surgery. Secondary outcomes include measures of inflammation, organ injury, and volumes of blood transfused. The cost effectiveness of the NIRS-based algorithm is described in terms of a cost-effectiveness acceptability curve. The trial tests the superiority of the patient-specific algorithm versus standard care. A sample size of 200 patients was chosen to detect a small to moderate target difference with 80% power and 5% significance (two tailed). RESULTS: Over 4 years, 208 patients have been successfully randomized and have been followed up for a 3-month period. Results are to be reported in 2015. CONCLUSIONS: This study provides high-quality evidence, both valid and widely applicable, to determine whether the use of NIRS monitoring as part of a patient-specific management algorithm improves clinical outcomes and is cost effective. TRIAL REGISTRATION: International Standard Randomized Controlled Trial Number (ISRCTN): 23557269; http://www.isrctn.com/ISRCTN23557269 (Archived by Webcite at http://www.webcitation.org/6buyrbj64).

2.
Syst Rev ; 3: 41, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24886933

ABSTRACT

BACKGROUND: Several aggregate data meta-analyses suggest that treatment guided by the serum concentration of natriuretic peptides (B-type natriuretic peptide (BNP) or its derivative N-terminal pro-B-type natriuretic peptide (NT-BNP)) reduces all-cause mortality compared with usual care in patients with heart failure (HF). We propose to conduct a meta-analysis using individual participant data (IPD) to estimate the effect of BNP-guided therapy on clinical outcomes, and estimate the extent of effect modification for clinically important subgroups. METHODS: We will use standard systematic review methods to identify relevant trials and assess study quality. We will include all randomized controlled trials (RCTs) of BNP-guided treatment for HF that report a clinical outcome. The primary outcome will be time to all-cause mortality. We will collate anonymized, individual patient data into a single database, and carry out appropriate data checks. We will use fixed-effects and random-effects meta-analysis methods to combine hazard ratios (HR) estimated within each RCT, across all RCTs. We will also include a meta-analysis and meta-regression analyses based on aggregate data, and combine IPD with aggregate data if we obtain IPD for a subset of trials. DISCUSSION: The IPD meta-analysis will allow us to estimate how patient characteristics modify treatment benefit, and to identify relevant subgroups of patients who are likely to benefit most from BNP-guided therapy. This is important because aggregate meta-analyses have suggested that clinically relevant subgroup effects exist, but these analyses have been unable to quantify the effects reliably or precisely. TRIALS REGISTRATION: PROSPERO 2013: CRD42013005335.


Subject(s)
Cardiotonic Agents/administration & dosage , Heart Failure/drug therapy , Natriuretic Peptide, Brain/blood , Biomarkers, Pharmacological/blood , Cardiotonic Agents/therapeutic use , Heart Failure/blood , Humans , Systematic Reviews as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...