Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS One ; 15(6): e0234407, 2020.
Article in English | MEDLINE | ID: mdl-32511276

ABSTRACT

Testisin (encoded by PRSS21) is a membrane anchored serine protease, which is tethered to the cell surface via a glycosylphosphatidylinositol (GPI)-anchor. While testisin is found in abundance in spermatozoa, it is also expressed in microvascular endothelial cells where its function is unknown. Here we identify testisin as a novel regulator of physiological hormone-induced angiogenesis and microvascular endothelial permeability. Using a murine model of rapid physiological angiogenesis during corpus luteal development in the ovary, we found that mice genetically deficient in testisin (Prss21-/-) show a substantially increased incidence of hemorrhages which are significantly more severe than in littermate control Prss21+/+ mice. This phenotype was associated with increased vascular leakiness, demonstrated by a greater accumulation of extravasated Evans blue dye in Prss21-/- ovaries. Live cell imaging of in vitro cultured microvascular endothelial cells depleted of testisin by siRNA knockdown revealed that loss of testisin markedly impaired reorganization and tubule-like formation on Matrigel basement membranes. Moreover testisin siRNA knockdown increased the paracellular permeability to FITC-albumin across endothelial cell monolayers, which was associated with decreased expression of the adherens junction protein VE-cadherin and increased levels of phospho(Tyr658)-VE-cadherin, without affecting the levels of the tight junction proteins occludin and claudin-5, or ZO-1. Decreased expression of VE-cadherin in the neovasculature of Prss21-/- ovaries was also observed without marked differences in endothelial cell content, vascular claudin-5 expression or pericyte recruitment. Together, these data identify testisin as a novel regulator of VE-cadherin adhesions during angiogenesis and indicate a potential new target for regulating neovascular integrity and associated pathologies.


Subject(s)
Capillary Permeability/physiology , Corpus Luteum/blood supply , Neovascularization, Physiologic , Serine Endopeptidases/deficiency , Animals , Antigens, CD/metabolism , Cadherins/metabolism , Capillary Permeability/genetics , Cells, Cultured , Corpus Luteum/pathology , Corpus Luteum/physiopathology , Female , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/deficiency , GPI-Linked Proteins/genetics , GPI-Linked Proteins/physiology , Gene Knockdown Techniques , Hemorrhage/etiology , Hemorrhage/genetics , Hemorrhage/physiopathology , Humans , Luteinization/genetics , Luteinization/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Physiologic/genetics , Phenotype , Serine Endopeptidases/genetics , Serine Endopeptidases/physiology
3.
J Mol Cell Cardiol ; 115: 94-103, 2018 02.
Article in English | MEDLINE | ID: mdl-29291394

ABSTRACT

AIMS: Mitral valve interstitial cells (MVIC) play an important role in the pathogenesis of degenerative mitral regurgitation (MR) due to mitral valve prolapse (MVP). Numerous clinical studies have observed serotonin (5HT) dysregulation in cardiac valvulopathies; however, the impact of 5HT-mediated signaling on MVIC activation and leaflet remodeling in MVP have been investigated to a limited extent. Here we test the hypothesis that 5HT receptors (5HTRs) signaling contributes to MVP pathophysiology. METHODS AND RESULTS: Diseased human MV leaflets were obtained during cardiac surgery for MVP; normal MV leaflets were obtained from heart transplants. MV RNA was used for microarray analysis of MVP patients versus control, highlighting genes that indicate the involvement of 5HTR pathways and extracellular matrix remodeling in MVP. Human MV leaflets were also studied in vitro and ex vivo with biomechanical testing to assess remodeling in the presence of a 5HTR2B antagonist (LY272015). MVP leaflets from Cavalier King Charles Spaniels were used as a naturally acquired in vivo model of MVP. These canine MVP leaflets (N=5/group) showed 5HTR2B upregulation. This study also utilized CB57.1ML/6 mice in order to determine the effect of Angiotensin II infusion on MV remodeling. Histological analysis showed that MV thickening due to chronic Angiotensin II remodeling is mitigated by a 5HTR2B antagonist (LY272015) but not by 5HTR2A inhibitors. CONCLUSION: In humans, MVP is associated with an upregulation in 5HTR2B expression and increased 5HT receptor signaling in the leaflets. Antagonism of 5HTR2B mitigates MVIC activation in vitro and MV remodeling in vivo. These observations support the view that 5HTR signaling is involved not only in previously reported 5HT-related valvulopathies, but it is also involved in the pathological remodeling of MVP.


Subject(s)
Mitral Valve Insufficiency/metabolism , Mitral Valve Insufficiency/pathology , Receptor, Serotonin, 5-HT2B/metabolism , Signal Transduction , Angiotensin II , Animals , Biomechanical Phenomena/drug effects , Case-Control Studies , Dogs , Humans , Mice, Inbred C57BL , Mitral Valve/drug effects , Mitral Valve/metabolism , Mitral Valve/pathology , Organic Chemicals/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Signal Transduction/drug effects
4.
J R Soc Interface ; 14(135)2017 10.
Article in English | MEDLINE | ID: mdl-29046338

ABSTRACT

Mechanical stress is one of the major aetiological factors underlying soft-tissue remodelling, especially for the mitral valve (MV). It has been hypothesized that altered MV tissue stress states lead to deviations from cellular homeostasis, resulting in subsequent cellular activation and extracellular matrix (ECM) remodelling. However, a quantitative link between alterations in the organ-level in vivo state and in vitro-based mechanobiology studies has yet to be made. We thus developed an integrated experimental-computational approach to elucidate MV tissue and interstitial cell responses to varying tissue strain levels. Comprehensive results at different length scales revealed that normal responses are observed only within a defined range of tissue deformations, whereas deformations outside of this range lead to hypo- and hyper-synthetic responses, evidenced by changes in α-smooth muscle actin, type I collagen, and other ECM and cell adhesion molecule regulation. We identified MV interstitial cell deformation as a key player in leaflet tissue homeostatic regulation and, as such, used it as the metric that makes the critical link between in vitro responses to simulated equivalent in vivo behaviour. Results indicated that cell responses have a delimited range of in vivo deformations that maintain a homeostatic response, suggesting that deviations from this range may lead to deleterious tissue remodelling and failure.


Subject(s)
Extracellular Matrix/physiology , Homeostasis/physiology , Mitral Valve/cytology , Mitral Valve/physiology , Animals , Biomechanical Phenomena , Cell Adhesion/physiology , Cell Survival , Collagen/physiology , Gene Expression Regulation/physiology , Models, Cardiovascular , Polymerase Chain Reaction/methods , Swine , Tissue Culture Techniques
5.
Oncotarget ; 6(32): 33534-53, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26392335

ABSTRACT

The membrane-anchored serine proteases are a unique group of trypsin-like serine proteases that are tethered to the cell surface via transmembrane domains or glycosyl-phosphatidylinositol-anchors. Overexpressed in tumors, with pro-tumorigenic properties, they are attractive targets for protease-activated prodrug-like anti-tumor therapies. Here, we sought to engineer anthrax toxin protective antigen (PrAg), which is proteolytically activated on the cell surface by the proprotein convertase furin to instead be activated by tumor cell-expressed membrane-anchored serine proteases to function as a tumoricidal agent. PrAg's native activation sequence was mutated to a sequence derived from protein C inhibitor (PCI) that can be cleaved by membrane-anchored serine proteases, to generate the mutant protein PrAg-PCIS. PrAg-PCIS was resistant to furin cleavage in vitro, yet cytotoxic to multiple human tumor cell lines when combined with FP59, a chimeric anthrax toxin lethal factor-Pseudomonas exotoxin fusion protein. Molecular analyses showed that PrAg-PCIS can be cleaved in vitro by several serine proteases including the membrane-anchored serine protease testisin, and mediates increased killing of testisin-expressing tumor cells. Treatment with PrAg-PCIS also potently attenuated the growth of testisin-expressing xenograft tumors in mice. The data indicates PrAg can be engineered to target tumor cell-expressed membrane-anchored serine proteases to function as a potent tumoricidal agent.


Subject(s)
Antigens, Bacterial/pharmacology , Bacterial Toxins/pharmacology , Prodrugs/pharmacology , Serine Endopeptidases/pharmacology , Amino Acid Sequence , Animals , Antigens, Bacterial/genetics , Antineoplastic Agents/pharmacology , Bacterial Toxins/genetics , Cell Line, Tumor , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/pharmacology , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Nude , Protein Engineering , Serine Endopeptidases/genetics , Xenograft Model Antitumor Assays
6.
J Biol Chem ; 290(6): 3529-41, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25519908

ABSTRACT

Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca(2+) mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface.


Subject(s)
Proteolysis , Receptor, PAR-2/metabolism , Serine Endopeptidases/metabolism , Calcium Signaling , Cell Membrane/metabolism , GPI-Linked Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , MAP Kinase Signaling System , NF-kappa B/metabolism , Receptor, PAR-2/chemistry , Response Elements
7.
J Biol Chem ; 288(15): 10328-37, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-23443662

ABSTRACT

The type II transmembrane serine protease matriptase is a key regulator of epithelial barriers in skin and intestine. In skin, matriptase acts upstream of the glycosylphosphatidylinositol-anchored serine protease, prostasin, to activate the prostasin zymogen and initiate a proteolytic cascade that is required for stratum corneum barrier functionality. Here, we have investigated the relationship between prostasin and matriptase in intestinal epithelial barrier function. We find that similar to skin, matriptase and prostasin are components of a common intestinal epithelial barrier-forming pathway. Depletion of prostasin by siRNA silencing in Caco-2 intestinal epithelium inhibits barrier development similar to loss of matriptase, and the addition of recombinant prostasin to the basal side of polarized Caco-2 epithelium stimulates barrier forming changes similar to the addition of recombinant matriptase. However, in contrast to the proteolytic cascade in skin, prostasin functions upstream of matriptase to activate the endogenous matriptase zymogen. Prostasin is unable to proteolytically activate the matriptase zymogen directly but induces matriptase activation indirectly. Prostasin requires expression of endogenous matriptase to stimulate barrier formation since matriptase depletion by siRNA silencing abrogates prostasin barrier-forming activity. Active recombinant matriptase, however, does not require the expression of endogenous prostasin for barrier-forming activity. Together, these data show that matriptase and not prostasin is the primary effector protease of tight junction assembly in simple columnar epithelia and further highlight a spatial and tissue-specific aspect of cell surface proteolytic cascades.


Subject(s)
Enzyme Precursors/biosynthesis , Epithelial Cells/enzymology , Gene Expression Regulation, Enzymologic/physiology , Intestinal Mucosa/enzymology , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/metabolism , Caco-2 Cells , Enzyme Activation/physiology , Enzyme Precursors/genetics , Epithelial Cells/cytology , Gene Silencing , Humans , Intestinal Mucosa/cytology , Proteolysis , Serine Endopeptidases/genetics , Tight Junctions/enzymology , Tight Junctions/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...