Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 112(5): 1362-7, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25605932

ABSTRACT

Hydrogenases use complex metal cofactors to catalyze the reversible formation of hydrogen. In [FeFe]-hydrogenases, the H-cluster cofactor includes a diiron subcluster containing azadithiolate, three CO, and two CN(-) ligands. During the assembly of the H cluster, the radical S-adenosyl methionine (SAM) enzyme HydG lyses the substrate tyrosine to yield the diatomic ligands. These diatomic products form an enzyme-bound Fe(CO)x(CN)y synthon that serves as a precursor for eventual H-cluster assembly. To further elucidate the mechanism of this complex reaction, we report the crystal structure and EPR analysis of HydG. At one end of the HydG (ßα)8 triosephosphate isomerase (TIM) barrel, a canonical [4Fe-4S] cluster binds SAM in close proximity to the proposed tyrosine binding site. At the opposite end of the active-site cavity, the structure reveals the auxiliary Fe-S cluster in two states: one monomer contains a [4Fe-5S] cluster, and the other monomer contains a [5Fe-5S] cluster consisting of a [4Fe-4S] cubane bridged by a µ2-sulfide ion to a mononuclear Fe(2+) center. This fifth iron is held in place by a single highly conserved protein-derived ligand: histidine 265. EPR analysis confirms the presence of the [5Fe-5S] cluster, which on incubation with cyanide, undergoes loss of the labile iron to yield a [4Fe-4S] cluster. We hypothesize that the labile iron of the [5Fe-5S] cluster is the site of Fe(CO)x(CN)y synthon formation and that the limited bonding between this iron and HydG may facilitate transfer of the intact synthon to its cognate acceptor for subsequent H-cluster assembly.


Subject(s)
Bacterial Proteins/chemistry , Crystallography, X-Ray/methods , Electron Spin Resonance Spectroscopy/methods , Hydrogen/chemistry , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Catalytic Domain , Models, Molecular , Protein Conformation , Tyrosine/chemistry
2.
Biochemistry ; 52(48): 8696-707, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24206022

ABSTRACT

The radical S-adenosyl-L-methionine (AdoMet) enzyme HydG is one of three maturase enzymes involved in [FeFe]-hydrogenase H-cluster assembly. It catalyzes L-tyrosine cleavage to yield the H-cluster cyanide and carbon monoxide ligands as well as p-cresol. Clostridium acetobutylicum HydG contains the conserved CX3CX2C motif coordinating the AdoMet binding [4Fe-4S] cluster and a C-terminal CX2CX22C motif proposed to coordinate a second [4Fe-4S] cluster. To improve our understanding of the roles of each of these iron-sulfur clusters in catalysis, we have generated HydG variants lacking either the N- or C-terminal cluster and examined these using spectroscopic and kinetic methods. We have used iron analyses, UV-visible spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy of an N-terminal C96/100/103A triple HydG mutant that cannot coordinate the radical AdoMet cluster to unambiguously show that the C-terminal cysteine motif coordinates an auxiliary [4Fe-4S] cluster. Spectroscopic comparison with a C-terminally truncated HydG (ΔCTD) harboring only the N-terminal cluster demonstrates that both clusters have similar UV-visible and EPR spectral properties, but that AdoMet binding and cleavage occur only at the N-terminal radical AdoMet cluster. To elucidate which steps in the catalytic cycle of HydG require the auxiliary [4Fe-4S] cluster, we compared the Michaelis-Menten constants for AdoMet and L-tyrosine for reconstituted wild-type, C386S, and ΔCTD HydG and demonstrate that these C-terminal modifications do not affect the affinity for AdoMet but that the affinity for L-tyrosine is drastically reduced compared to that of wild-type HydG. Further detailed kinetic characterization of these HydG mutants demonstrates that the C-terminal cluster and residues are not essential for L-tyrosine cleavage to p-cresol but are necessary for conversion of a tyrosine-derived intermediate to cyanide and CO.


Subject(s)
Clostridium acetobutylicum/enzymology , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , S-Adenosylmethionine/chemistry , Catalysis , Clostridium acetobutylicum/genetics , Electron Spin Resonance Spectroscopy , Hydrogenase/genetics , Iron-Sulfur Proteins/genetics , Kinetics , Mutagenesis, Site-Directed , Protein Structure, Tertiary
3.
PLoS One ; 8(7): e67979, 2013.
Article in English | MEDLINE | ID: mdl-23861844

ABSTRACT

The 'radical S-adenosyl-L-methionine (AdoMet)' enzyme Cfr methylates adenosine 2503 of the 23S rRNA in the peptidyltransferase centre (P-site) of the bacterial ribosome. This modification protects host bacteria, notably methicillin-resistant Staphylococcus aureus (MRSA), from numerous antibiotics, including agents (e.g. linezolid, retapamulin) that were developed to treat such organisms. Cfr contains a single [4Fe-4S] cluster that binds two separate molecules of AdoMet during the reaction cycle. These are used sequentially to first methylate a cysteine residue, Cys338; and subsequently generate an oxidative radical intermediate that facilitates methyl transfer to the unreactive C8 (and/or C2) carbon centres of adenosine 2503. How the Cfr active site, with its single [4Fe-4S] cluster, catalyses these two distinct activities that each utilise AdoMet as a substrate remains to be established. Here, we use absorbance and electron paramagnetic resonance (EPR) spectroscopy to investigate the interactions of AdoMet with the [4Fe-4S] clusters of wild-type Cfr and a Cys338 Ala mutant, which is unable to accept a methyl group. Cfr binds AdoMet with high (∼ 10 µM) affinity notwithstanding the absence of the RNA cosubstrate. In wild-type Cfr, where Cys338 is methylated, AdoMet binding leads to rapid oxidation of the [4Fe-4S] cluster and production of 5'-deoxyadenosine (DOA). In contrast, while Cys338 Ala Cfr binds AdoMet with equivalent affinity, oxidation of the [4Fe-4S] cluster is not observed. Our results indicate that the presence of a methyl group on Cfr Cys338 is a key determinant of the activity of the enzyme towards AdoMet, thus enabling a single active site to support two distinct modes of AdoMet cleavage.


Subject(s)
Cysteine/metabolism , Escherichia coli Proteins/biosynthesis , Free Radicals/metabolism , Methyltransferases/biosynthesis , S-Adenosylmethionine/metabolism , Deoxyadenosines/biosynthesis , Electron Spin Resonance Spectroscopy , Escherichia coli Proteins/genetics , Ligands , Methylation , Methyltransferases/genetics , Protein Binding , Recombinant Proteins
4.
Biochim Biophys Acta ; 1824(11): 1165-77, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22504666

ABSTRACT

A large superfamily of enzymes have been identified that make use of radical intermediates derived by reductive cleavage of S-adenosylmethionine. The primary nature of the radical intermediates makes them highly reactive and potent oxidants. They are used to initiate biotransformations by hydrogen atom abstraction, a process that allows a particularly diverse range of substrates to be functionalized, including substrates with relatively inert chemical structures. In the first part of this review, we discuss the evidence supporting the mechanism of radical formation from S-adenosylmethionine. In the second part of the review, we examine the potential of reaction products arising from S-adenosylmethionine to cause product inhibition. The effects of this product inhibition on kinetic studies of 'radical S-adenosylmethionine' enzymes are discussed and strategies to overcome these issues are reviewed. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.


Subject(s)
Coenzymes/metabolism , Feedback, Physiological , Iron-Sulfur Proteins/metabolism , S-Adenosylmethionine/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Coenzymes/chemistry , Deoxyadenosines/chemistry , Deoxyadenosines/metabolism , Eukaryota , Free Radicals/chemistry , Free Radicals/metabolism , Iron-Sulfur Proteins/chemistry , Kinetics , Models, Molecular , Oxidation-Reduction , Protons , S-Adenosylmethionine/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...