Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 185: 964-974, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28753743

ABSTRACT

The current study evaluated the interactive effects of chronic waterborne copper (Cu) and nickel (Ni) exposure on tissue-specific metal accumulation and reproductive performance in fathead minnow (Pimephales promelas). Fish trios (1 male: 2 female; n = 5-6) were exposed for 21 days to: (i) control (no added Cu or Ni), (ii) waterborne Cu (45 µg/L), (iii) waterborne Ni (270 µg/L), and (iv) binary mixture of waterborne Cu and Ni (45 and 270 µg/L, respectively). Fish fecundity (cumulative egg production) was found to be the most sensitive reproductive endpoint, and the interaction of Cu and Ni elicited an additive effect on egg production. Tissue-specific accumulation of both metals was not influenced by the interaction of Cu and Ni, except an increased Cu and Ni burden in the carcass and ovary, respectively, were recorded. The expressions of hepatic estrogen receptor genes (ER-α and ER-ß) and the circulating estradiol level in females were also not affected by the metal-mixture treatment. However, co-exposure to waterborne Cu and Ni resulted in a significant downregulation of the hepatic vitellogenin gene in females, which was associated with the maximum upregulation of the hepatic metallothionein gene. In addition, a significant alteration of ovarian histopathology (decreased abundance of post-vitellogenic follicles, and increased follicular atresia) was also observed only in females exposed to Cu and Ni in mixture. Collectively, these observations suggest that chronic waterborne exposure to Cu and Ni in binary mixture may impair fish reproductive capacity by inducing histopathological damage in ovarian tissue, and disrupting of energy homeostasis in fish.


Subject(s)
Copper/toxicity , Cyprinidae/physiology , Nickel/toxicity , Water Pollutants, Chemical/toxicity , Animals , Copper/metabolism , Female , Fertility , Male , Metallothionein/metabolism , Nickel/metabolism , Reproduction/drug effects , Toxicity Tests, Chronic , Vitellogenins/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
2.
Ecotoxicol Environ Saf ; 140: 65-75, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28235657

ABSTRACT

The present study was designed to evaluate the interactive effects of chronic waterborne cadmium (Cd) and zinc (Zn) on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas). Trios (1 male: 2 female; n=6-7) of fish were exposed for 21 days to: (i) control (no added Cd or Zn), (ii) waterborne Cd (7µg/L), (iii) waterborne Zn (170µg/L), and (iv) Cd and Zn in mixture (7 and 170µg/L, respectively). Exposure to Cd or Zn alone did not elicit any significant effect on reproductive output (cumulative egg production) relative to the control, however exposure to Cd and Zn in mixture resulted in a ~50% decrease in fish fecundity. Plasma estradiol in females was reduced by Cd and Zn exposures, both individually and in mixture, with the maximum reduction in the metal mixture exposure. The expression of hepatic estrogen receptor genes (ER-α and ER-ß) in females was affected by exposure to Zn, alone and in mixture with Cd, but not to Cd alone, whereas hepatic vitellogenin gene expression was downregulated across all treatments. Increased follicular atresia in the ovary was also recorded, but only in fish exposed to Cd and Zn in mixture. The interactions of Cd and Zn in mixture decreased Cd accumulation in tissues (gill and liver), however no reciprocal reduction in tissue Zn accumulation was observed. In addition, the expression of the hepatic metallothionein gene was upregulated following exposure to Zn, alone and in combination with Cd, with no additive effects in the latter treatment. Overall, our findings suggest that chronic exposure to waterborne Cd and Zn in mixture may induce additive reproductive toxicity, essentially by disrupting estrogen-mediated functions in fish.


Subject(s)
Cadmium/toxicity , Cyprinidae/metabolism , Reproduction/drug effects , Water Pollutants, Chemical/toxicity , Zinc/toxicity , Animals , Cadmium/metabolism , Cyprinidae/growth & development , Estradiol/metabolism , Estrogens/metabolism , Female , Fertility/drug effects , Gills/metabolism , Liver/metabolism , Male , Metallothionein/metabolism , Vitellogenins/metabolism , Water Pollutants, Chemical/metabolism , Zinc/metabolism
3.
Article in English | MEDLINE | ID: mdl-26498072

ABSTRACT

The present study was carried out to examine the interactive effects of chronic waterborne copper (Cu) and cadmium (Cd) on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas). Trios (1 male: 2 female; n=5) of fish were exposed for 21days to: (i) control (no added Cu or Cd), (ii) waterborne Cu (75µg/L), (iii) waterborne Cd (5µg/L), and (iv) Cu and Cd mixture (75 and 5µg/L, respectively). Reproductive output (cumulative egg production) was significantly reduced by Cu but not by Cd. Interestingly however, no spawning occurred in fish exposed to the mixture of waterborne Cu and Cd. In general, both Cu and Cd accumulation in target tissues (gill, liver, gonad and carcass) increased significantly in fish exposed to Cu and Cd mixture, and no interaction between Cu and Cd accumulation was observed in any tissues, except in the liver where Cu accumulation was significantly reduced by Cd. The expression of female hepatic estrogen receptor genes (ER-α and ER-ß) was most significantly elevated in fish exposed to Cu and Cd mixture, whereas vitellogenin gene expression was reduced maximally in the same exposure. Similarly, the hepatic expression of the metallothionein gene was most significantly upregulated in fish exposed to Cu and Cd mixture. Moreover, the circulating estradiol level in females was significantly decreased only during the co-exposure of waterborne Cu and Cd. Overall, the present study indicates that the interaction of chronic waterborne Cu and Cd exposure may elicit greater than additive effect on reproductive output in fish.


Subject(s)
Cadmium/metabolism , Cadmium/toxicity , Copper/metabolism , Copper/toxicity , Reproduction/drug effects , Water Pollutants, Chemical/toxicity , Animals , Cyprinidae , Environmental Exposure/adverse effects , Female , Male , Metals/metabolism , Metals/toxicity , Organ Specificity/drug effects , Organ Specificity/physiology , Reproduction/physiology , Water Pollutants, Chemical/metabolism
4.
Integr Environ Assess Manag ; 10(4): 543-54, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25044203

ABSTRACT

For the past decade, considerable research has been conducted at a series of small lakes receiving treated liquid effluent containing elevated selenium (Se) from the Key Lake uranium (U) milling operation in northern Saskatchewan, Canada. Several studies related to this site, including field collections of water, sediment, and biota (biofilm and/or periphyton, invertebrates, fish, and birds), semicontrolled mesocosm and in situ caging studies, and controlled laboratory experiments have recently been published. The aim of the present investigation was to compile the site-specific information obtained from this multidisciplinary research into an integrative perspective regarding the influence of Se speciation on biogeochemical cycling and food web transfer of Se in coldwater ecosystems. Within lakes, approximately 50% of sediment Se was in the form of elemental Se, although this ranged from 0% to 81% among samples. This spatial variation in elemental Se was positively correlated with finer particles (less sand) and percent total organic C content in sediments. Other Se species detected in sediments included selenosulfides, selenite, and inorganic metal selenides. In contrast, the major Se form in sediment-associated biofilm and/or periphyton was an organoselenium species modeled as selenomethionine (SeMet), illustrating the critical importance of this matrix in biotransformation of inorganic Se to organoselenium compounds and subsequent trophic transfer to benthic invertebrates at the base of the food web. Detritus displayed a Se speciation profile intermediate between sediment and biofilm, with both elemental Se and SeMet present. In benthic detritivore (chironomid) larvae and emergent adults, and in foraging and predatory fishes, SeMet was the dominant Se species. The proportion of total Se present as a SeMet-like species displayed a direct nonlinear relationship with increasing whole-body Se in invertebrates and fishes, plateauing at approximately 70% to 80% of total Se as a SeMet-like species. In fish collected from reference lakes, a selenocystine-like species was the major Se species detected. Similar Se speciation profiles were observed using 21-day mesocosm and in situ caging studies with native small-bodied fishes, illustrating the efficient bioaccumulation of Se and use of these semicontrolled approaches for future research. A simplified conceptual model illustrating changes in Se speciation through abiotic and biotic components of lakes was developed, which is likely applicable to a wide range of northern industrial sites receiving elevated Se loading into aquatic ecosystems.


Subject(s)
Ecosystem , Environmental Monitoring , Geological Phenomena , Lakes/chemistry , Selenium/chemistry , Selenium/metabolism , Animals , Birds/metabolism , Canada , Fishes/metabolism , Models, Theoretical , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
5.
Article in English | MEDLINE | ID: mdl-21839854

ABSTRACT

Research at the Key Lake uranium mill (Saskatchewan, Canada) suggests effluent discharged from the mill affects energy stores of resident fish, but the mechanisms by which energy homeostasis is affected and the subsequent effects on swimming performance are unknown. In the present study larvae were collected from laboratory raised adult fathead minnow (Pimephales promelas) exposed to 5% diluted uranium mill effluent or control (dechlorinated municipal) water, and reared in the same treatments to 60 days post hatch (dph). Critical swimming speed (U(crit)) was significantly lower in effluent exposed 60 dph fish compared to control fish. Fish used in tests were considered fatigued and compared to fish without swim testing (non-fatigued). There were no differences in whole body glycogen or triglyceride concentrations between effluent exposed versus control fish. However, fatigued fish from both treatments had significantly lower triglycerides, but not glycogen, compared to non-fatigued fish from the same treatment. Whole body ß-hydroxyacyl coenzymeA dehydrogenase activity was similar in fish from both treatments, but citrate synthase activity was significantly lower in effluent exposed fish. Our results suggest uranium mill effluent exposure in the laboratory affects aerobic energy metabolism and swimming performance in juvenile fathead minnow, which could affect wild fish survivability.


Subject(s)
Cyprinidae/physiology , Energy Metabolism/drug effects , Swimming , Uranium/toxicity , Water Pollutants, Chemical/toxicity , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Animals , Citrate (si)-Synthase/metabolism , Female , Industrial Waste , Male , Reproduction
7.
Ecotoxicology ; 20(6): 1209-24, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21479937

ABSTRACT

Northern Saskatchewan, Canada is home to a uranium milling operation that discharges a complex milling effluent containing nutrients, cations and anions, and many metals including selenium (Se). Se has the potential to accumulate in a system even when water concentrations are low. This study evaluated the effects of treated uranium milling effluent and contaminated sediment in combination and in isolation to determine the contribution and importance of each source to fathead minnow (Pimephales promelas) reproduction and survival. Trios of fathead minnows were allocated to one of four treatments for 21-days where the following were evaluated; survival (adult and 5 day larval), larval deformities, reproductive effects (egg production, spawning events) and metal tissue burdens (muscle, gonad, eggs and larvae). In addition Se speciation analysis was conducted on fish tissues. Effects were solely effluent-mediated with little contribution observed due to the presence of contaminated sediments. The contaminated sediments tested were taken from the actual receiving environment and represented the sediment composition found in greatest abundance. Results showed egg production significantly increased in the effluent treatments compared to the reference water treatments. Although egg production increased following effluent exposure, there was reduced hatching and larval survival and a significant increase in skeletal deformities in 5 day old larvae. Despite these effects on the offspring, when examined in an integrated manner relative to increased egg production, the mean number of normal larvae did not differ among treatments. Total selenium significantly increased in the effluent exposed, algae, female muscle, gonad, eggs and larvae in addition to other metals. A shift in the proportion of species of selenium was evident with changing exposure conditions. Biofilm/algae was key in the transfer of available Se into the food chain from the water and a source of direct dietary exposure in fish and possibly invertebrates.


Subject(s)
Cyprinidae/physiology , Radiation Monitoring/methods , Reproduction/radiation effects , Uranium/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Radioactive/toxicity , Animals , Cyprinidae/metabolism , Ecosystem , Female , Fresh Water/chemistry , Geologic Sediments/chemistry , Male , Uranium/analysis , Uranium/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Water Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...