Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 13358, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31527623

ABSTRACT

Northern Hemisphere western boundary currents, like the Gulf Stream, are key regions for cyclogenesis affecting large-scale atmospheric circulation. Recent observations and model simulations with high-temporal and -spatial resolution have provided evidence that the associated ocean fronts locally affect troposphere dynamics. A coherent view of how this affects the mean climate and its variability is, however, lacking. In particular the separate role of resolved ocean and atmosphere dynamics in shaping the atmospheric circulation is still largely unknown. Here we demonstrate for the first time, by using coupled seasonal forecast experiments at different resolutions, that resolving meso-scale oceanic variability in the Gulf Stream region strongly affects mid-latitude interannual atmospheric variability, including the North Atlantic Oscillation. Its impact on climatology, however, is minor. Increasing atmosphere resolution to meso-scale, on the other hand, strongly affects mean climate but moderately its variability. We also find that regional predictability relies on adequately resolving small-scale atmospheric processes, while resolving small-scale oceanic processes acts as an unpredictable source of noise, except for the North Atlantic storm-track where the forcing of the atmosphere translates into skillful predictions.

2.
Nat Commun ; 9(1): 3024, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30108213

ABSTRACT

In a changing climate, there is an ever-increasing societal demand for accurate and reliable interannual predictions. Accurate and reliable interannual predictions of global temperatures are key for determining the regional climate change impacts that scale with global temperature, such as precipitation extremes, severe droughts, or intense hurricane activity, for instance. However, the chaotic nature of the climate system limits prediction accuracy on such timescales. Here we develop a novel method to predict global-mean surface air temperature and sea surface temperature, based on transfer operators, which allows, by-design, probabilistic forecasts. The prediction accuracy is equivalent to operational forecasts and its reliability is high. The post-1998 global warming hiatus is well predicted. For 2018-2022, the probabilistic forecast indicates a warmer than normal period, with respect to the forced trend. This will temporarily reinforce the long-term global warming trend. The coming warm period is associated with an increased likelihood of intense to extreme temperatures. The important numerical efficiency of the method (a few hundredths of a second on a laptop) opens the possibility for real-time probabilistic predictions carried out on personal mobile devices.

3.
Nat Commun ; 9: 16222, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29938693

ABSTRACT

This corrects the article DOI: 10.1038/ncomms14375.

4.
Sci Rep ; 8(1): 7402, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29743486

ABSTRACT

It is still unclear whether a hiatus period arises due to a vertical redistribution of ocean heat content (OHC) without changing ocean heat uptake (OHU), or whether the increasing radiative forcing is associated with an increase in OHU when global mean surface temperature (GMST) rise stalls. By isolating natural variability from forced trends and performing a more precise lead-lag analysis, we show that in climate models TOA radiation and OHU do anti-correlate with natural variations in GMST, when GMST leads or when they coincide, but the correlation changes sign when OHU leads. Surface latent and sensible heat fluxes always force GMST-variations, whilst net surface longwave and solar radiation fluxes have a damping effect, implying that natural GMST-variations are caused by oceanic heat redistribution. In the models an important trigger for a hiatus period on decadal timescales is increased reflection of solar radiation, by increased sea-ice cover over deep-water formation areas. On inter-annual timescales, reflection of solar radiation in the tropics by increased cloud cover associated with La Niña is most important and the subsequent reduction in latent heat release becomes the dominant cause for a hiatus.

5.
Nat Commun ; 82017 02 15.
Article in English | MEDLINE | ID: mdl-28198383

ABSTRACT

Observations over the 20th century evidence no long-term warming in the subpolar North Atlantic (SPG). This region even experienced a rapid cooling around 1970, raising a debate over its potential reoccurrence. Here we assess the risk of future abrupt SPG cooling in 40 climate models from the fifth Coupled Model Intercomparison Project (CMIP5). Contrary to the long-term SPG warming trend evidenced by most of the models, 17.5% of the models (7/40) project a rapid SPG cooling, consistent with a collapse of the local deep-ocean convection. Uncertainty in projections is associated with the models' varying capability in simulating the present-day SPG stratification, whose realistic reproduction appears a necessary condition for the onset of a convection collapse. This event occurs in 45.5% of the 11 models best able to simulate the observed SPG stratification. Thus, due to systematic model biases, the CMIP5 ensemble as a whole underestimates the chance of future abrupt SPG cooling, entailing crucial implications for observation and adaptation policy.

6.
Proc Natl Acad Sci U S A ; 112(43): E5777-86, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26460042

ABSTRACT

Abrupt transitions of regional climate in response to the gradual rise in atmospheric greenhouse gas concentrations are notoriously difficult to foresee. However, such events could be particularly challenging in view of the capacity required for society and ecosystems to adapt to them. We present, to our knowledge, the first systematic screening of the massive climate model ensemble informing the recent Intergovernmental Panel on Climate Change report, and reveal evidence of 37 forced regional abrupt changes in the ocean, sea ice, snow cover, permafrost, and terrestrial biosphere that arise after a certain global temperature increase. Eighteen out of 37 events occur for global warming levels of less than 2°, a threshold sometimes presented as a safe limit. Although most models predict one or more such events, any specific occurrence typically appears in only a few models. We find no compelling evidence for a general relation between the overall number of abrupt shifts and the level of global warming. However, we do note that abrupt changes in ocean circulation occur more often for moderate warming (less than 2°), whereas over land they occur more often for warming larger than 2°. Using a basic proportion test, however, we find that the number of abrupt shifts identified in Representative Concentration Pathway (RCP) 8.5 scenarios is significantly larger than in other scenarios of lower radiative forcing. This suggests the potential for a gradual trend of destabilization of the climate with respect to such shifts, due to increasing global mean temperature change.

7.
Sci Rep ; 5: 14877, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26437599

ABSTRACT

A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15-20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40-50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible.

8.
Proc Natl Acad Sci U S A ; 110(49): 19713-8, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24248352

ABSTRACT

Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high-resolution climate model, without imposing external perturbations. Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre. In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland. The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70 °N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea. In consequence, east of Greenland, anomalous winds changed from north to south, terminating the event with similar abruptness to its onset. Our results imply that only climate models that possess sufficient resolution to correctly represent atmospheric blocking, in combination with a sensitive sea-ice model, are able to simulate this kind of abrupt climate change.


Subject(s)
Atmosphere/chemistry , Climate Change , Ice Cover/chemistry , Models, Theoretical , Water Movements , Computer Simulation , Fresh Water , Oceans and Seas , Salinity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...