Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 9: 3044, 2018.
Article in English | MEDLINE | ID: mdl-30619135

ABSTRACT

Cable bacteria are long, multicellular micro-organisms that are capable of transporting electrons from cell to cell along the longitudinal axis of their centimeter-long filaments. The conductive structures that mediate this long-distance electron transport are thought to be located in the cell envelope. Therefore, this study examines in detail the architecture of the cell envelope of cable bacterium filaments by combining different sample preparation methods (chemical fixation, resin-embedding, and cryo-fixation) with a portfolio of imaging techniques (scanning electron microscopy, transmission electron microscopy and tomography, focused ion beam scanning electron microscopy, and atomic force microscopy). We systematically imaged intact filaments with varying diameters. In addition, we investigated the periplasmic fiber sheath that remains after the cytoplasm and membranes were removed by chemical extraction. Based on these investigations, we present a quantitative structural model of a cable bacterium. Cable bacteria build their cell envelope by a parallel concatenation of ridge compartments that have a standard size. Larger diameter filaments simply incorporate more parallel ridge compartments. Each ridge compartment contains a ~50 nm diameter fiber in the periplasmic space. These fibers are continuous across cell-to-cell junctions, which display a conspicuous cartwheel structure that is likely made by invaginations of the outer cell membrane around the periplasmic fibers. The continuity of the periplasmic fibers across cells makes them a prime candidate for the sought-after electron conducting structure in cable bacteria.

2.
J Phys Chem A ; 121(6): 1182-1188, 2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28094940

ABSTRACT

Determining the mechanism of charge transport through native DNA remains a challenge as different factors such as measuring conditions, molecule conformations, and choice of technique can significantly affect the final results. In this contribution, we have used a new approach to measure current flowing through isolated double-stranded DNA molecules, using fullerene groups to anchor the DNA to a gold substrate. Measurements were performed at room temperature in an inert environment using a conductive AFM technique. It is shown that the π-stacked B-DNA structure is conserved on depositing the DNA. As a result, currents in the nanoampere range were obtained for voltages ranging between ±1 V. These experimental results are supported by a theoretical model that suggests that a multistep hopping mechanism between delocalized domains is responsible for the long-range current flow through this specific type of DNA.


Subject(s)
DNA, B-Form/chemistry , Fullerenes/chemistry , Electric Conductivity , Models, Chemical , Nanowires/chemistry , Nucleic Acid Conformation
3.
ACS Appl Mater Interfaces ; 8(10): 6309-14, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26927416

ABSTRACT

Conjugated polyelectrolyte (CPE) interfacial layers present a powerful way to boost the I-V characteristics of organic photovoltaics. Nevertheless, clear guidelines with respect to the structure of high-performance interlayers are still lacking. In this work, impedance spectroscopy is applied to probe the dielectric permittivity of a series of polythiophene-based CPEs. The presence of ionic pendant groups grants the formation of a capacitive double layer, boosting the charge extraction and device efficiency. A counteracting effect is the diminishing affinity with the underlying photoactive layer. To balance these two effects, we found copolymer structures containing nonionic side chains to be beneficial.

SELECTION OF CITATIONS
SEARCH DETAIL
...