Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Environ Sci (China) ; 57: 1-7, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28647228

ABSTRACT

A model is developed to enable estimation of chloramine demand in full scale drinking water supplies based on chemical and microbiological factors that affect chloramine decay rate via nonlinear regression analysis method. The model is based on organic character (specific ultraviolet absorbance (SUVA)) of the water samples and a laboratory measure of the microbiological (Fm) decay of chloramine. The applicability of the model for estimation of chloramine residual (and hence chloramine demand) was tested on several waters from different water treatment plants in Australia through statistical test analysis between the experimental and predicted data. Results showed that the model was able to simulate and estimate chloramine demand at various times in real drinking water systems. To elucidate the loss of chloramine over the wide variation of water quality used in this study, the model incorporates both the fast and slow chloramine decay pathways. The significance of estimated fast and slow decay rate constants as the kinetic parameters of the model for three water sources in Australia was discussed. It was found that with the same water source, the kinetic parameters remain the same. This modelling approach has the potential to be used by water treatment operators as a decision support tool in order to manage chloramine disinfection.


Subject(s)
Chloramines/chemistry , Models, Chemical , Australia , Drinking Water/chemistry , Kinetics , Water Purification/methods , Water Supply
2.
J Environ Sci (China) ; 57: 170-179, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28647237

ABSTRACT

The management of chloramine decay and the prevention of nitrification are some of the critical issues faced by water utilities that use chloramine as a disinfectant. In this study, potential association between high performance size exclusion chromatography (HPSEC) data obtained with multiple wavelength Ultraviolet (UV) detection from two drinking water distribution systems in Australia and nitrification occurrence was investigated. An increase in the absorbance signal of HPSEC profiles with UV detection at λ=230nm between apparent molecular weights of 200 to 1000Da was observed at sampling sites that experienced rapid chloramine decay and nitrification while its absorbance signal at λ=254nm decreased. A chloramine decay index (C.D.I) defined as the ratio of area beneath the HPSEC spectra at two different wavelengths of 230 and 254nm, was used in assessing chloramine decay occurrences. The C.D.Is of waters at locations that experienced nitrification were consistently higher than locations not experiencing nitrification. A simulated laboratory study showed that the formation of nitrite/nitrate and/or soluble microbial products and/or the release of extracellular polymeric substances (EPS) during nitrification may contribute to the C.D.I. increase. These findings suggest that C.D.I derived from HPSEC with multiple wavelength UV detection could be an informative index to track the occurrence of rapid chloramine decay and nitrification.


Subject(s)
Chloramines/chemistry , Disinfectants/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Ammonia , Australia , Drinking Water , Nitrification , Nitrites , Water Supply
3.
J Environ Sci (China) ; 57: 338-345, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28647255

ABSTRACT

Minimizing particles in water is a key goal for improving drinking water quality and safety. The media filtration process, as the last step of the solid-liquid separation process, is largely influenced by the characteristics of flocs, which are formed and controlled within the coagulation process. In a laboratory-based study, the impacts of the physical characteristics of flocs formed using aluminum sulfate on the filtration treatment of two comparative water samples were investigated using a photometric dispersion analyzer and a filterability apparatus. In general, the optimum dosage for maximizing filterability was higher than that for minimizing turbidity under neutral pH conditions. For a monomeric aluminum-based coagulant, the charge neutralization mechanism produced better floc characteristics, including floc growth speed and size, than the sweep flocculation mechanism. In addition, the charge neutralization mechanism showed better performance compared to sweep flocculation in terms of DOC removal and floc filterability improvement for both waters, and showed superiority in turbidity removal only when the raw water had high turbidity. For the different mechanisms, the ways that floc characteristics impacted on floc filterability also differed. The low variation in floc size distribution obtained under the charge neutralization mechanism resulted in the flocs being amenable to removal by filtration processes. For the sweep flocculation mechanism, increasing the floc size improved the settling ability of flocs, resulting in higher filter efficiency.


Subject(s)
Filtration/methods , Flocculation , Waste Disposal, Fluid/methods , Models, Chemical
4.
Food Waterborne Parasitol ; 8-9: 64-74, 2017.
Article in English | MEDLINE | ID: mdl-32095641

ABSTRACT

The safety of drinking water in Australia is ensured using a risk management framework embedded within the Australian Drinking Water Guidelines (ADWG). This framework includes elements for hazard identification, risk assessment, risk mitigation, verification of barrier performance and monitoring for any changes to the hazards that influence source water quality. The next revision of the ADWG will incorporate Health-Based Targets (HBTs) for achieving microbiologically safe drinking water. This incorporates Quantitative Microbial Risk Assessment and the metric of Disability Adjusted Life Year (DALY) to define safety, with a target of 1 × 10- 6 Disability Adjusted Life Year (1 microDALY) set as the maximum tolerable disease burden from drinking water, which in the case of Cryptosporidium is < 1.3 × 10- 5 oocysts/L. The resulting product water specification, in combination with knowledge of pathogen challenges in source waters, allows the determination of the treatment requirements to ensure public safety. The ADWG revision provides default removal values for Cryptosporidium for particular treatment processes, such as conventional coagulation and dual media filtration. However, these values are based on assumptions regarding treatment plant design, operation and water quality. To properly manage risk and demonstrate compliance with the guidelines, water utilities may need to validate treatment performance for Cryptosporidium removal. A particular limitation is the absence of Cryptosporidium surrogates for full-scale filter validation. This paper will provide an overview of risk-based management of drinking water safety in Australia, the development of health-based targets for microbial pathogens and the evaluation of Cryptosporidium surrogates for conventional coagulation and dual media filtration.

5.
J Environ Sci (China) ; 44: 235-243, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27266320

ABSTRACT

This study examined the associations between dissolved organic matter (DOM) characteristics and potential nitrification occurrence in the presence of chloramine along a drinking water distribution system. High-performance size exclusion chromatography (HPSEC) coupled with a multiple wavelength detector (200-280nm) was employed to characterise DOM by molecular weight distribution, bacterial activity was analysed using flow cytometry, and a package of simple analytical tools, such as dissolved organic carbon, absorbance at 254nm, nitrate, nitrite, ammonia and total disinfectant residual were also applied and their applicability to indicate water quality changes in distribution systems were also evaluated. Results showed that multi-wavelength HPSEC analysis was useful to provide information about DOM character while changes in molecule weight profiles at wavelengths less than 230nm were also able to be related to other water quality parameters. Correct selection of the UV wavelengths can be an important factor for providing appropriate indicators associated with different DOM compositions. DOM molecular weight in the range of 0.2-0.5kDa measured at 210nm correlated positively with oxidised nitrogen concentration (r=0.99), and the concentrations of active bacterial cells in the distribution system (r=0.85). Our study also showed that the changes of DOM character and bacterial cells were significant in those sampling points that had decreases in total disinfectant residual. HPSEC-UV measured at 210nm and flow cytometry can detect the changes of low molecular weight of DOM and bacterial levels, respectively, when nitrification occurred within the chloraminated distribution system.


Subject(s)
Environmental Monitoring/instrumentation , Humic Substances/analysis , Water Pollutants/analysis , Chromatography, Gel , Chromatography, High Pressure Liquid , Environmental Monitoring/methods , Molecular Weight
6.
Water Res ; 102: 229-240, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27348195

ABSTRACT

Water quality remains one of the greatest concerns with regards to human health. Advances in science and technology have resulted in highly efficient water treatment plants, significantly reducing diseases related to waterborne pathogenic microorganisms. While disinfection is critical to mitigate pathogen risk to humans, the reactions between the disinfectant and dissolved organic compounds can lead to the formation of chemical contaminants called disinfection by-products (DBPs). DBPs have been related to numerous health issues including birth defects and cancer. The formation of disinfection by-products occurs due to the reaction of oxidants and natural organic matter. DBP precursors are derived from anthropogenic sources including pharmaceuticals and chemical waste, the breakdown of vegetation from external catchment sources (allochthonous) and internally derived sources including phytoplankton (autochthonous). Current literature focuses on the contribution of allochthonous sources towards the formation of DBPs, however, the recalcitrant nature of hydrophilic phytoplankton derived organic matter indicates that autochthonous derived organic carbon can significantly contribute to total DBP concentrations. The contribution of phytoplankton to the formation of DBPs is also influenced by cellular exudation rates, chemical composition, environmental conditions and the physical and chemical conditions of the solution upon disinfection. Formation of DBPs is further influenced by the presence of cyanobacteria phyla due to their notoriety for forming dense blooms. Management of DBP formation can potentially be improved by reducing cyanobacteria as well as DBP precursors derived from other phytoplankton.


Subject(s)
Disinfection , Halogenation , Disinfectants/chemistry , Phytoplankton , Water Pollutants, Chemical/chemistry , Water Purification
7.
J Water Health ; 14(2): 183-91, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27105403

ABSTRACT

Research is increasingly indicating the potential chronic health effects of brominated disinfection by-products (DBPs). This is likely to increase with elevated bromide concentrations resulting from the impacts of climate change, projected to include extended periods of drought and the sudden onset of water quality changes. This will demand more rigorous monitoring throughout distribution systems and improved water quality management at water treatment plants (WTPs). In this work the impact of increased bromide concentration on formation of DBPs following conventional treatment and chlorination was assessed for two water sources. Bioanalytical tests were utilised to determine cytotoxicity of the water post disinfection. Coagulation was shown to significantly reduce the cytotoxicity of the water, indicating that removal of natural organic matter DBP precursors continues to be an important factor in drinking water treatment. Most toxic species appear to form within the first half hour following disinfectant addition. Increasing bromide concentration across the two waters was shown to increase the formation of trihalomethanes and shifted the haloacetic acid species distribution from chlorinated to those with greater bromine substitution. This correlated with increasing cytotoxicity. This work demonstrates the challenges faced by WTPs and the possible effects increasing levels of bromide in source waters could have on public health.


Subject(s)
Bromides/toxicity , Disinfection/methods , Drinking Water/analysis , Water Pollutants, Chemical/toxicity , Water Purification/methods , Water Quality , Halogenation , Humans , Leukocytes/drug effects , South Australia , Trihalomethanes/analysis , Western Australia
8.
Chemosphere ; 150: 211-218, 2016 May.
Article in English | MEDLINE | ID: mdl-26901478

ABSTRACT

In full scale water treatment operation, the rapid filtration process, as the last step of solid-liquid separation, is largely influenced by floc characteristics. In this study, aluminium sulphate (alum) and nano-Al13 were investigated to understand the influence of coagulant species on the formation and filterability of flocs. At neutral pH, it was found that nano-Al13, a high MW polymer, showed better floc filterability than alum. This is because of the densely compacted and well-distributed size flocs from nano-Al13, even though floc sizes of alum were generally bigger. Al specie distributions of the two coagulants at different pH levels were compared by using electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) to further elucidate the reasons for the superiority of nano-Al13 in floc filterability. Depolymerisation/re-polymerisation of nano-Al13 occurred as pH changed, and Al species from nano-Al13were more abundant than that from alum, especially for the high molecular weight (MW) oligomers such as Al11, Al12, Al13 and Al14. Under the charge neutralisation mechanism, higher MW Al species was found to improve coagulation performance and floc filterability. In addition, breakage resistance and regrowth ability of nano-Al13 was better than alum, at weak acid condition. Flocs formed by the charge neutralisation mechanism readily regenerated after being thoroughly broken up. The floc regrowth ability of nano-Al13 at high shear rates (200 rpm and 300 rpm) was much better than at low shear and better than any shear applied to alum., and the flocs after breakage at 200 rpm and 300 rpm also showed better filterability than other conditions.


Subject(s)
Alum Compounds/chemistry , Aluminum Hydroxide/chemistry , Filtration/methods , Flocculation , Nanoparticles/chemistry , Water Purification/methods , Australia , Hydrogen-Ion Concentration
9.
J Hazard Mater ; 308: 430-9, 2016 May 05.
Article in English | MEDLINE | ID: mdl-26874432

ABSTRACT

Dissolved organic matter (DOM) in surface waters used for drinking purposes can vary markedly in character dependent on their sources within catchments. The character of DOM further influences the formation of disinfection by products when precursor DOM present in drinking water reacts with chlorine during disinfection. Here we report the development of models that describe the formation potential of trihalomethanes (THMFP) dependent on the character of DOM in waters from discrete catchments with specific land-use and soil textures. DOM was characterized based on UV absorbance at 254 nm, apparent molecular weight and relative abundances of protein-like and humic-like compounds. DOM character and Br concentration (up to 0.5 mg/L) were used as variables in models (R(2)>0.93) of THMFP, which ranged from 19 to 649 µg/L. Chloroform concentration (12-594 µg/L) and relative abundance (27-99%) were first modeled (R(2)>0.85) and from these, the abundances of bromodichloromethane and chlorodibromomethane estimated using power and exponential functions, respectively (R(2)>0.98). From these, the abundance of bromoform is calculated. The proposed model may be used in risk assessment of catchment factors on formation of trihalomethanes in drinking water, in context of treatment efficiency for removal of organic matter.


Subject(s)
Fresh Water/chemistry , Models, Theoretical , Trihalomethanes/chemistry , Water Pollutants, Chemical/chemistry , Benzopyrans , Drinking Water/chemistry , Humic Substances , Water Supply
10.
Water Res ; 88: 904-911, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26614969

ABSTRACT

Ammonia degradation was investigated in three batch reactors with differing initial concentrations of bacteria present in the same filtered water source based on pre-treatment filtration techniques. The potential for the bacterial community to degrade the ammonia present was determined in the absence of monochloramine, simulating a distribution system where a loss of disinfectant residual has occurred. Nitrification was observed in only one of the three batch reactors, whereas rapid microbiologically induced chloramine decay was present in two reactors. Results suggest that the microbial decay factor is not a valid tool for indication of nitrification, but may be used as an indicator of the occurrence of rapid monochloramine decay. Intact bacterial cell numbers did not to correlate with changes in ammonia, nitrite or nitrate concentrations and hence did not correlate with the nitrification observed. Neither use of the microbial decay factor or monitoring of ammonia oxidising prokaryotes provided an early indication for the occurrence of nitrification. Hence, monitoring of ammonia and nitrite would still be the most suitable tool for indicating nitrification.


Subject(s)
Bacteria/metabolism , Chloramines/metabolism , Disinfection , Nitrification , Water Purification , Ammonia/metabolism , Biodegradation, Environmental
11.
Chemosphere ; 144: 1193-200, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26461444

ABSTRACT

The treatability of NOM present in runoff and subsurface waters from discrete zero-order catchments (ZOCs) with three land management practices (Australian native vegetation, pine plantation, grasslands) on varying soil textures of a closed drinking water reservoir-catchment was investigated. Subsurface water samples were collected by lysimeters and shallow piezometers and surface waters by installation of barriers that diverted waters to collection devices. For small sample volumes collected, a 'micro' jar testing procedure was developed to assess the treatability of organics by enhanced coagulation using alum, under standardised conditions. DOM present in water samples was quantified by measurement of DOC and UV absorbance (at 254 nm) and characterized using these and F-EEM. The mean alum dose rate (mg alum per mg DOC removed or Al/DOC) was found to be lower for DOM from sandy soil ZOCs (21.1 ± 11.0 Al/DOC) than from clayey soil ZOCs (38.6 ± 27.7 Al/DOC). ZOCs with Pinus radiata had prominent litter layers (6.3 ± 2.6 cm), and despite differences in soil textures showed similarity in DOM character in subsurface waters, and in alum dose rates (22.2 ± 5.5 Al/DOC). For sandy soil ZOCs, the lowest alum dose rates (16.5 ± 10.6 Al/DOC) were for waters from native vegetation catchment while, for clayey soil ZOCs, waters from pine vegetation had the lowest alum dose rates (23.0 ± 5.0 Al/DOC). Where ZOCs have a prominent O horizon, soil minerals had no apparent influence on the treatability of DOM.


Subject(s)
Drinking Water/standards , Fresh Water/chemistry , Groundwater/chemistry , Humic Substances/analysis , Soil/chemistry , Water Resources , Alum Compounds/chemistry , Australia
12.
Water Res ; 87: 202-10, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26414297

ABSTRACT

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) surface analysis was conducted to characterise deposits in polyethylene pipes used in a novel pilot water distribution system (PDS). The system consisted of four (4) parallel distribution systems receiving water from different treatment processes, ranging from conventional coagulation through to an advanced membrane filtration system. After two years of operation, the distribution system was shut down and samples of pipe were collected for autopsy analysis. Inlet and outlet samples from each PDS were collected for purpose of comparison. ToF-SIMS was used to assess chemical differences in surface biofilm accumulation and particulate deposition, which resulted as a consequence of the treatment method and operational mode of each system. These data supplemented previously collected bacteriological and chemical water quality data. Results from the inorganic analysis of the pipes were consistent with corrosion and contamination events that occurred upstream in the corresponding treatment systems. Principal component analysis of data on organic constituents showed oxygen and nitrogen containing fragments were associated with the treatment inlet and outlet samples. These types of signals can often be ascribed to biofilm polysaccharides and proteins. A trend was observed when comparing samples from the same PDS, showing an association of lower molecular weight (MW) organic fragments with the inlet and higher MW organic fragments with the outlet samples.


Subject(s)
Bacterial Physiological Phenomena , Biofilms , Water Microbiology , Water Quality , Water Supply/methods , Pilot Projects , South Australia
13.
Appl Environ Microbiol ; 81(18): 6463-73, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26162884

ABSTRACT

Drinking water assessments use a variety of microbial, physical, and chemical indicators to evaluate water treatment efficiency and product water quality. However, these indicators do not allow the complex biological communities, which can adversely impact the performance of drinking water distribution systems (DWDSs), to be characterized. Entire bacterial communities can be studied quickly and inexpensively using targeted metagenomic amplicon sequencing. Here, amplicon sequencing of the 16S rRNA gene region was performed alongside traditional water quality measures to assess the health, quality, and efficiency of two distinct, full-scale DWDSs: (i) a linear DWDS supplied with unfiltered water subjected to basic disinfection before distribution and (ii) a complex, branching DWDS treated by a four-stage water treatment plant (WTP) prior to disinfection and distribution. In both DWDSs bacterial communities differed significantly after disinfection, demonstrating the effectiveness of both treatment regimes. However, bacterial repopulation occurred further along in the DWDSs, and some end-user samples were more similar to the source water than to the postdisinfection water. Three sample locations appeared to be nitrified, displaying elevated nitrate levels and decreased ammonia levels, and nitrifying bacterial species, such as Nitrospira, were detected. Burkholderiales were abundant in samples containing large amounts of monochloramine, indicating resistance to disinfection. Genera known to contain pathogenic and fecal-associated species were also identified in several locations. From this study, we conclude that metagenomic amplicon sequencing is an informative method to support current compliance-based methods and can be used to reveal bacterial community interactions with the chemical and physical properties of DWDSs.


Subject(s)
Bacteria/genetics , Drinking Water/microbiology , Microbiota , Sequence Analysis, DNA/methods , Water Microbiology , Bacteria/classification , Bacteria/isolation & purification , Biota , Chloramines , Disinfection/methods , Disinfection/standards , Genes, rRNA , Metagenome , Microbial Interactions , Nitrification , RNA, Ribosomal, 16S/genetics , Water Microbiology/standards , Water Purification/standards , Water Quality
14.
Sci Total Environ ; 529: 72-81, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26005751

ABSTRACT

The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~30 cm and ~60 cm in addition to overland flows. Filtered (0.45 µm) water samples were analyzed for dissolved organic carbon (DOC) and UV-visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on the quality of source water used for domestic supply.


Subject(s)
Environmental Monitoring , Plants/chemistry , Soil/chemistry , Water Pollutants/analysis , Models, Chemical , South Australia , Water Movements , Water Supply
15.
J Environ Sci (China) ; 26(10): 1985-93, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25288541

ABSTRACT

The treatment of organics present in the lower reaches of a major river system (the Murray-Darling Basin, Australia) before (March-July 2010), during (December 2010-May 2011) and after (April-December 2012) a major flood period was investigated. The flood period (over 6months) occurred during an intense La Niña cycle, leading to rapid and high increases in river flows and organic loads in the river water. Dissolved organic carbon (DOC) increased (2-3 times) to high concentrations (up to 16mg/L) and was found to correlate with river flow rates. The treatability of organics was studied using conventional jar tests with alum and an enhanced coagulation model (mEnCo©). Predicted mean alum dose rates (per mg DOC) were higher before (9.1mg alum/mg DOC) and after (8.5mg alum/mg DOC) than during the flood event (8.0mg alum/mg DOC), indicating differences in the character of the organics in raw waters. To assess the character of natural organic matter present in raw and treated waters, high performance size exclusion chromatography with UV and fluorescence detectors were used. During the flood period, high molecular weight UV absorbing compounds (>2kDa) were mostly detected in waters collected, but were not evident in waters collected before and afterwards. The relative abundances of humic-like and protein-like compounds during and following the flood period were also investigated and found to be of a higher molecular weight during the flood period. The treatability of the organics was found to vary over the three climate conditions investigated.


Subject(s)
Climate , Drinking Water , Floods , Carbon/analysis , Chromatography, Gel , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Molecular Weight , Rivers , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
16.
Chemosphere ; 117: 185-92, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25038469

ABSTRACT

Biofilm control in drinking water distribution systems (DWDSs) is crucial, as biofilms are known to reduce flow efficiency, impair taste and quality of drinking water and have been implicated in the transmission of harmful pathogens. Microorganisms within biofilm communities are more resistant to disinfection compared to planktonic microorganisms, making them difficult to manage in DWDSs. This study evaluates the impact of four unique drinking water treatments on biofilm community structure using metagenomic DNA sequencing. Four experimental DWDSs were subjected to the following treatments: (1) conventional coagulation, (2) magnetic ion exchange contact (MIEX) plus conventional coagulation, (3) MIEX plus conventional coagulation plus granular activated carbon, and (4) membrane filtration (MF). Bacterial biofilms located inside the pipes of each system were sampled under sterile conditions both (a) immediately after treatment application ('inlet') and (b) at a 1 km distance from the treatment application ('outlet'). Bacterial 16S rRNA gene sequencing revealed that the outlet biofilms were more diverse than those sampled at the inlet for all treatments. The lowest number of unique operational taxonomic units (OTUs) and lowest diversity was observed in the MF inlet. However, the MF system revealed the greatest increase in diversity and OTU count from inlet to outlet. Further, the biofilm communities at the outlet of each system were more similar to one another than to their respective inlet, suggesting that biofilm communities converge towards a common established equilibrium as distance from treatment application increases. Based on the results, MF treatment is most effective at inhibiting biofilm growth, but a highly efficient post-treatment disinfection regime is also critical in order to prevent the high rates of post-treatment regrowth.


Subject(s)
Bacteria/genetics , Bacterial Physiological Phenomena , Biofilms , Drinking Water/microbiology , Genome, Bacterial , Water Purification/standards , Bacteria/classification , Bacteria/isolation & purification , High-Throughput Nucleotide Sequencing , Metagenome , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , South Australia
17.
Water Res ; 62: 117-26, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24945979

ABSTRACT

This study investigated effects of pH, bromide and natural organic matter (NOM) level on yields and speciation of trihalomethanes (THMs) and haloacetic acids (HAAs) in chlorinated water. Experimental data were obtained using two water sources, one with a medium (DOC = 1.4 mg/L and SUVA = 2.60 L mg(-1) m(-1)) and the other with higher (DOC = 7.7 mg/L and SUVA = 4.26 L mg(-1) m(-1)) organic carbon level. The experiments employed the simulated distribution system (SDS) procedure at varying bromide concentrations and pH values of 7.0, 8.5 and 10. The speciation of THMs and dihalogenated HAAs (DHAAs) was interpreted based on the modelling of mixed halogenation yields via dimensionless ratios of bromination/chlorination reaction rates at each halogen incorporation node. The approach allowed precise modelling of the speciation of THMs and DHAAs at all examined pHs. In the case of DHAA, the dimensionless ratios of the bromination/chlorination reaction rates were not consistently affected by pH variations. For THMs, increase of pH caused the values of the dimensionless bromination/chlorination reaction rates to decrease in the case of halogenation of the initial reaction sites indicating a decreasing preference toward bromination at this reaction node. A similar trend was observed for the reactivity of dichlorinated reaction intermediate denoted as SCl2 whose formation precedes the release of CHCl3 and CHBrCl2. A similar but less consistent trend was observed for intermediate SBrCl whose halogenation yields both CHBrCl2 and CHBr2Cl. An opposite trend of increasing preference towards bromination at higher pHs was observed monobrominated intermediate SBr and in some extent dibrominated intermediate SBr2. These results help develop detailed DBP speciation models which needed to better understand the generation and potential health effects of THMs and HAAs at varying operating conditions and ultimately to adopt measure to minimize their levels in drinking water systems.


Subject(s)
Acetates/chemistry , Bromides/chemistry , Halogenation , Models, Theoretical , Trihalomethanes/chemistry , Hydrogen-Ion Concentration , Water , Water Quality
18.
Sci Total Environ ; 488-489: 36-45, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24814034

ABSTRACT

Four treatment processes; conventional coagulation, magnetic ion exchange (MIEX)/coagulation, with and without granular activated carbon (GAC), and membrane treatment combining microfiltration (MF) and nanofiltration (NF), were operated in parallel using the same source water from the Murray-Darling basin in South Australia. During the two year study, high levels of natural organic matter and turbidity arising from floods affecting the Murray-Darling basin in 2010-2012 challenged the four processes. The comparative study indicated that all four processes could effectively meet basic water quality guidelines of turbidity and colour despite challenging source water quality but that the more advanced treatments improved overall organic and bacterial removal. Interestingly, the high organics and turbidity arising from the floods resulted in improved treatment efficiency for all treatments incorporating coagulation to the extent that, despite flood conditions, treated water quality could remain comparatively constant provided that the process was operated and optimised effectively.


Subject(s)
Droughts , Floods , Water Purification/methods , Water Supply/analysis , South Australia , Water Microbiology , Water Pollutants, Chemical/analysis
19.
J Hazard Mater ; 263 Pt 2: 718-25, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24220196

ABSTRACT

In this study, we investigated the relationship between water characteristics and removal of natural organic matter (NOM) using polyaluminium chloride (PACl) and a newly developed coagulant obtained by hybridising PACl with chitosan (PACl-chitosan) for two different types of water. Using UV-visible spectroscopy analysis, we showed that PACl-chitosan is more effective than PACl for treating water samples that contain higher levels of activated polyhydroxyaromatic moieties. As a result, a lower level of total trihalomethanes formation potential (THMFP) was detected for synthetic water treated with PACl-chitosan coagulant compared to water treated with PACl only. In contrast, no difference was observed for the total THMFP that were formed following coagulation with either coagulant, for water sample containing the same level of organic carbon concentration, but lower levels of polyhydroxyaromatic moieties. Our work shows how the complex characteristics and interactions of organic matter with coagulant component can affect the outcome of the treatment process, and in this case, enhance the treatment. The use of PACl-chitosan was also shown to produce larger floc for both water samples; this again, can lead to better removal.


Subject(s)
Aluminum Hydroxide/chemistry , Chitosan/chemistry , Organic Chemicals/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Australia , Humic Substances , Hydrogen-Ion Concentration , Molecular Weight , Particle Size , Scattering, Radiation , Trihalomethanes/chemistry , Ultraviolet Rays , Water/chemistry
20.
Water Sci Technol ; 66(11): 2402-9, 2012.
Article in English | MEDLINE | ID: mdl-23032771

ABSTRACT

Resin fractionation is the most widely used technique to isolate and characterize natural organic matter (NOM) based on its hydrophobicity and hydrophilicity, however, it is also recognized as a time consuming technique. This paper describes the use of reverse phase high performance liquid chromatography (RPHPLC) as a rapid assessment technique to determine the hydrophobicity/hydrophilicity of NOM. The optimum column separation condition was achieved and without the need for concentrating the sample prior to analysis and with good reproducibility of the peak retention time and the peak area. The characterization results were further compared with the traditional resin fractionation technique using DAX-8 and XAD-4 resins. The results demonstrated that the polarities defined by the two methods were different but consistent and also that the fractions absorbed onto XAD-4 were less hydrophobic than those absorbed onto DAX-8. The difference in definition between resin fractionation and RPHPLC were further investigated.


Subject(s)
Humic Substances/analysis , Chromatography, High Pressure Liquid , Hydrophobic and Hydrophilic Interactions , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...