Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 378(6618): 412-417, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36302013

ABSTRACT

Two >130-meter-diameter impact craters formed on Mars during the later half of 2021. These are the two largest fresh impact craters discovered by the Mars Reconnaissance Orbiter since operations started 16 years ago. The impacts created two of the largest seismic events (magnitudes greater than 4) recorded by InSight during its 3-year mission. The combination of orbital imagery and seismic ground motion enables the investigation of subsurface and atmospheric energy partitioning of the impact process on a planet with a thin atmosphere and the first direct test of martian deep-interior seismic models with known event distances. The impact at 35°N excavated blocks of water ice, which is the lowest latitude at which ice has been directly observed on Mars.

2.
Science ; 378(6618): 417-421, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36302020

ABSTRACT

We detected surface waves from two meteorite impacts on Mars. By measuring group velocity dispersion along the impact-lander path, we obtained a direct constraint on crustal structure away from the InSight lander. The crust north of the equatorial dichotomy had a shear wave velocity of approximately 3.2 kilometers per second in the 5- to 30-kilometer depth range, with little depth variation. This implies a higher crustal density than inferred beneath the lander, suggesting either compositional differences or reduced porosity in the volcanic areas traversed by the surface waves. The lower velocities and the crustal layering observed beneath the landing site down to a 10-kilometer depth are not a global feature. Structural variations revealed by surface waves hold implications for models of the formation and thickness of the martian crust.

3.
J Geophys Res Planets ; 127(1): e2021JE007118, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35847353

ABSTRACT

The NASA InSight mission to Mars successfully landed on 26 November 2018 in Elysium Planitia. It aims to characterize the seismic activity and aid in the understanding of the internal structure of Mars. We focus on the Cerberus Fossae region, a giant fracture network ∼1,200 km long situated east of the InSight landing site where M ∼3 marsquakes were detected during the past 2 years. It is formed of five main fossae located on the southeast of the Elysium Mons volcanic rise. We perform a detailed mapping of the entire system based on high-resolution satellite images and Digital Elevation Models. The refined cartography reveals a range of morphologies associated with dike activity at depth. Width and throw measurements of the fossae are linearly correlated, suggesting a possible tectonic control on the shapes of the fossae. Widths and throws decrease toward the east, indicating the long-term direction of propagation of the dike-induced graben system. They also give insights into the geometry at depth and how the possible faults and fractures are rooted in the crust. The exceptional preservation of the fossae allows us to detect up to four scales of segmentation, each formed by a similar number of 3-4 segments/subsegments. This generic distribution is comparable to continental faults and fractures on Earth. We anticipate higher stress and potential marsquakes within intersegment zones and at graben tips.

4.
Space Sci Rev ; 215(1): 12, 2019.
Article in English | MEDLINE | ID: mdl-30880848

ABSTRACT

By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars' surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking's Mars seismic monitoring by a factor of ∼ 2500 at 1 Hz and ∼ 200 000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars' surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of M w ∼ 3 at 40 ∘ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11214-018-0574-6) contains supplementary material, which is available to authorized users.

SELECTION OF CITATIONS
SEARCH DETAIL
...