Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 39(12): 2572-6, 2000 Jun 12.
Article in English | MEDLINE | ID: mdl-11197011

ABSTRACT

Two new one-dimensional nickel(II) complexes were synthesized and characterized: [Ni(N,N-dimethylethylenediamine)(N3)2] (1) and [Ni(2-aminoethylpyridine)(N3)2] (2). The crystal structures of 1 and 2 were solved. Complex 1 crystallizes in the monoclinic system, space group P2(1)/n with a = 10.569(2) A, b = 7.331(4) A, c = 12.9072(8) A, beta = 111.324(10) degrees, and Z = 4. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c with a = 12.299(5) A, b = 14.307(2) A, c = 12.604(3), beta = 106.72(2) degrees, and Z = 4. The two complexes are similar and may be described as one-dimensional systems with double-azido-bridged ligands in end-to-end and end-on coordination alternatively. The end-on moiety is almost identical for 1 and 2, but the end-to-end moiety is different in each structure: for 1 this part is almost planar but for 2 is nonplanar. In both cases the Ni atoms are situated in similar distorted octahedral environments. The magnetic properties of the two compounds were studied by susceptibility measurements vs temperature. The chi M vs T plots for 1 and 2 show a global antiferromagnetic behavior with a maximum near room temperature for 1 and at very low temperature for 2. J values for 1 and 2 were deduced from the spin Hamiltonian -sigma(J1SiSi+1 + J2Si+1Si+2). The computational method was based on the numerical solution for finite systems of increasing size. J values for 1 were J1 = -187 cm-1 and J2 = +77 cm-1 and for 2 J1 = -28 cm-1 and J2 = +73 cm-1. The positive values correspond to end-on azido ligands and the negative values to end-to-end azido ligands. Since the geometries of the [Ni(N3)]2 moieties involving the end-on azido ligands are almost the same in the two structures, the ferromagnetic coupling is nearly identical in the two compounds, while the significantly different antiferromagnetic couplings reflect the near planarity of the end-to-end Ni2(N3)2 fragment in 1 and its twisted geometry in 2.

2.
Inorg Chem ; 39(22): 5022-7, 2000 Oct 30.
Article in English | MEDLINE | ID: mdl-11233198

ABSTRACT

The reaction of manganese(II) and pyridine derivatives such as 3-methylpyridine (3-Mepy) and 3,4-dimethylpyridine (3,4-Dmepy) led to the new one-dimensional systems trans-[Mn(3-Mepy)2(N3)2]n (1) and trans-[Mn(3,4-Dmepy)2(N3)2]n (2). Compound 1 crystallizes in the monoclinic system, space group P2(1)/n, a = 11.201(3) A, b = 14.499(4) A, c = 14.308(4) A, Z = 6, and compound 2 crystallizes in the triclinic system, space group P1, a = 11.502(4) A, b = 14.246(5) A, c = 16.200(8) A, Z = 6. The two compounds show the same general one-dimensional arrangement of double azido bridges between neighboring manganese atoms with the unprecedented -Mn-(mu(1,3)-N3)2-Mn-(mu(1,3)-N3)2-Mn-(mu(1,1)-N3)2-Mn- sequence. Susceptibility and magnetization measurements reveal a ferrimagnetic-like behavior derived from the topology of the chain. A model of the Heisenberg chain, comprising classical spins coupled through alternating exchange interactions J1J1J2... is proposed to describe the magnetic behavior.

4.
Phys Rev Lett ; 67(2): 244-247, 1991 Jul 08.
Article in English | MEDLINE | ID: mdl-10044531
6.
Phys Rev B Condens Matter ; 40(16): 10992-10998, 1989 Dec 01.
Article in English | MEDLINE | ID: mdl-9991663
SELECTION OF CITATIONS
SEARCH DETAIL
...