Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Internet Res ; 24(7): e32280, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35838765

ABSTRACT

BACKGROUND: Valuable insights into the pathophysiology and consequences of acute psychosocial stress have been gained using standardized stress induction experiments. However, most protocols are limited to laboratory settings, are labor-intensive, and cannot be scaled to larger cohorts or transferred to daily life scenarios. OBJECTIVE: We aimed to provide a scalable digital tool that enables the standardized induction and recording of acute stress responses in outside-the-laboratory settings without any experimenter contact. METHODS: On the basis of well-described stress protocols, we developed the Digital Stress Test (DST) and evaluated its feasibility and stress induction potential in a large web-based study. A total of 284 participants completed either the DST (n=103; 52/103, 50.5% women; mean age 31.34, SD 9.48 years) or an adapted control version (n=181; 96/181, 53% women; mean age 31.51, SD 11.18 years) with their smartphones via a web application. We compared their affective responses using the international Positive and Negative Affect Schedule Short Form before and after stress induction. In addition, we assessed the participants' stress-related feelings indicated in visual analogue scales before, during, and after the procedure, and further analyzed the implemented stress-inducing elements. Finally, we compared the DST participants' stress reactivity with the results obtained in a classic stress test paradigm using data previously collected in 4 independent Trier Social Stress Test studies including 122 participants overall. RESULTS: Participants in the DST manifested significantly higher perceived stress indexes than the Control-DST participants at all measurements after the baseline (P<.001). Furthermore, the effect size of the increase in DST participants' negative affect (d=0.427) lay within the range of effect sizes for the increase in negative affect in the previously conducted Trier Social Stress Test experiments (0.281-1.015). CONCLUSIONS: We present evidence that a digital stress paradigm administered by smartphone can be used for standardized stress induction and multimodal data collection on a large scale. Further development of the DST prototype and a subsequent validation study including physiological markers are outlined.


Subject(s)
Exercise Test , Stress Disorders, Traumatic, Acute , Adult , Female , Humans , Male , Stress, Psychological/diagnosis , Stress, Psychological/psychology
3.
Mol Autism ; 12(1): 27, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33823922

ABSTRACT

BACKGROUND: Imitation of facial expressions plays an important role in social functioning. However, little is known about the quality of facial imitation in individuals with autism and its relationship with defining difficulties in emotion recognition. METHODS: We investigated imitation and recognition of facial expressions in 37 individuals with autism spectrum conditions and 43 neurotypical controls. Using a novel computer-based face analysis, we measured instructed imitation of facial emotional expressions and related it to emotion recognition abilities. RESULTS: Individuals with autism imitated facial expressions if instructed to do so, but their imitation was both slower and less precise than that of neurotypical individuals. In both groups, a more precise imitation scaled positively with participants' accuracy of emotion recognition. LIMITATIONS: Given the study's focus on adults with autism without intellectual impairment, it is unclear whether the results generalize to children with autism or individuals with intellectual disability. Further, the new automated facial analysis, despite being less intrusive than electromyography, might be less sensitive. CONCLUSIONS: Group differences in emotion recognition, imitation and their interrelationships highlight potential for treatment of social interaction problems in individuals with autism.


Subject(s)
Autistic Disorder/psychology , Emotions , Facial Expression , Imitative Behavior , Recognition, Psychology , Adult , Female , Humans , Male , Middle Aged , Signal Processing, Computer-Assisted , Young Adult
4.
Front Behav Neurosci ; 14: 88, 2020.
Article in English | MEDLINE | ID: mdl-32595461

ABSTRACT

Recent findings suggest a role of oxytocin on the tendency to spontaneously mimic the emotional facial expressions of others. Oxytocin-related increases of facial mimicry, however, seem to be dependent on contextual factors. Given previous literature showing that people preferentially mimic emotional expressions of individuals associated with high (vs. low) rewards, we examined whether the reward value of the mimicked agent is one factor influencing the oxytocin effects on facial mimicry. To test this hypothesis, 60 male adults received 24 IU of either intranasal oxytocin or placebo in a double-blind, between-subject experiment. Next, the value of male neutral faces was manipulated using an associative learning task with monetary rewards. After the reward associations were learned, participants watched videos of the same faces displaying happy and angry expressions. Facial reactions to the emotional expressions were measured with electromyography. We found that participants judged as more pleasant the face identities associated with high reward values than with low reward values. However, happy expressions by low rewarding faces were more spontaneously mimicked than high rewarding faces. Contrary to our expectations, we did not find a significant direct effect of intranasal oxytocin on facial mimicry, nor on the reward-driven modulation of mimicry. Our results support the notion that mimicry is a complex process that depends on contextual factors, but failed to provide conclusive evidence of a role of oxytocin on the modulation of facial mimicry.

5.
NPJ Digit Med ; 3: 25, 2020.
Article in English | MEDLINE | ID: mdl-32140568

ABSTRACT

Social interaction deficits are evident in many psychiatric conditions and specifically in autism spectrum disorder (ASD), but hard to assess objectively. We present a digital tool to automatically quantify biomarkers of social interaction deficits: the simulated interaction task (SIT), which entails a standardized 7-min simulated dialog via video and the automated analysis of facial expressions, gaze behavior, and voice characteristics. In a study with 37 adults with ASD without intellectual disability and 43 healthy controls, we show the potential of the tool as a diagnostic instrument and for better description of ASD-associated social phenotypes. Using machine-learning tools, we detected individuals with ASD with an accuracy of 73%, sensitivity of 67%, and specificity of 79%, based on their facial expressions and vocal characteristics alone. Especially reduced social smiling and facial mimicry as well as a higher voice fundamental frequency and harmony-to-noise-ratio were characteristic for individuals with ASD. The time-effective and cost-effective computer-based analysis outperformed a majority vote and performed equal to clinical expert ratings.

6.
Cogn Emot ; 33(8): 1672-1686, 2019 12.
Article in English | MEDLINE | ID: mdl-30898024

ABSTRACT

Despite advances in the conceptualisation of facial mimicry, its role in the processing of social information is a matter of debate. In the present study, we investigated the relationship between mimicry and cognitive and emotional empathy. To assess mimicry, facial electromyography was recorded for 70 participants while they completed the Multifaceted Empathy Test, which presents complex context-embedded emotional expressions. As predicted, inter-individual differences in emotional and cognitive empathy were associated with the level of facial mimicry. For positive emotions, the intensity of the mimicry response scaled with the level of state emotional empathy. Mimicry was stronger for the emotional empathy task compared to the cognitive empathy task. The specific empathy condition could be successfully detected from facial muscle activity at the level of single individuals using machine learning techniques. These results support the view that mimicry occurs depending on the social context as a tool to affiliate and it is involved in cognitive as well as emotional empathy.


Subject(s)
Cognition/physiology , Emotions/physiology , Empathy/physiology , Facial Expression , Imitative Behavior/physiology , Adolescent , Adult , Electromyography/methods , Facial Muscles/physiology , Female , Humans , Individuality , Male , Young Adult
7.
Stress ; 18(6): 631-7, 2015.
Article in English | MEDLINE | ID: mdl-26365125

ABSTRACT

Empathy is a core prerequisite for human social behavior. Relatively, little is known about how empathy is influenced by social stress and its associated neuroendocrine alterations. The current study was designed to test the impact of acute stress on emotional and cognitive empathy. Healthy male participants were exposed to a psychosocial laboratory stressor (trier social stress test, (TSST)) or a well-matched control condition (Placebo-TSST). Afterwards they participated in an empathy test measuring emotional and cognitive empathy (multifaceted empathy test, (MET)). Stress exposure caused an increase in negative affect, a rise in salivary alpha amylase and a rise in cortisol. Participants exposed to stress reported more emotional empathy in response to pictures displaying both positive and negative emotional social scenes. Cognitive empathy (emotion recognition) in contrast did not differ between the stress and the control group. The current findings provide initial evidence for enhanced emotional empathy after acute psychosocial stress.


Subject(s)
Emotions/physiology , Empathy/physiology , Stress, Psychological/psychology , Adult , Cognition/physiology , Humans , Hydrocortisone/analysis , Male , Saliva/chemistry , Salivary alpha-Amylases/analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...