Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Cell Pediatr ; 8(1): 5, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33914175

ABSTRACT

BACKGROUND: Immune-mediated cytopenias (AIC) are challenging complications following allogeneic hematopoietic stem cell transplantation (HSCT). While broad-acting immunosuppressive agents like corticosteroids are often standard of care, several novel therapies which target specific immunological pathways have recently been developed and provide hope for patients with steroid-refractory courses and may limit long-term toxicity. The successful off-label use of the plasma cell depleting anti-CD38 antibody daratumumab was published in several case reports, suggesting efficacy, i.e., in patients with antibody-mediated AIC refractory to previous B cell depletion. We want to share our experience with two children, whom we treated with daratumumab, including one fatal course with uncontrolled disease. Given the absence of substantial data from HSCT registries or prospective trials, we furthermore provide a critical review of the literature on daratumumab treatment of AIC. CASE PRESENTATIONS: Patient 1 (P1), an 11-year-old girl with lipopolysaccharide-responsive and beige-like anchor protein (LRBA) deficiency who developed immune-mediated thrombocytopenia (AIT) from day +58 after HSCT, showed a complete response to daratumumab after the fourth of six total daratumumab doses. She remains transfusion independent for over a year of follow-up. Previously, her thrombocytopenia was refractory to corticosteroids, rituximab, intravenous immunoglobulins (IVIG), eltrombopag, cyclosporine A, and sirolimus. Patient 2 (P2), a 6-year-old boy with CD40 ligand (CD40L) deficiency, developed both AIT and hemolytic anemia (AIHA) after HSCT on days +58 and +83, respectively, and was also treated with daratumumab after being previously refractory to prednisolone, rituximab, and IVIG. Yet, he did neither respond to daratumumab nor the concomitantly administered methyprednisolone pulse, plasmapheresis, and eculizumab and succumbed due to refractory disease. CONCLUSION: Reviewing the literature on the use of daratumumab for refractory AIC post-HSCT, we consider daratumumab a promising agent for this life-threatening disorder: ten of the twelve patients reached transfusion independency in the literature. However, treatment failures are likely to be underreported. Thus, controlled trials are needed to explore the safety and efficacy of daratumumab in this rare post-HSCT complication.

2.
Front Immunol ; 11: 580328, 2020.
Article in English | MEDLINE | ID: mdl-33384686

ABSTRACT

CAR T cell approaches to effectively target AML and T-ALL without off-tumor effects on healthy myeloid or T cell compartments respectively are an unmet medical need. NKG2D-ligands are a promising target given their absence on healthy cells and surface expression in a wide range of malignancies. NKG2D-ligand expression has been reported in a substantial group of patients with AML along with evidence for prognostic significance. However, reports regarding the prevalence and density of NKG2D-ligand expression in AML vary and detailed studies to define whether low level expression is sufficient to trigger NKG2D-ligand directed CART cell responses are lacking. NKG2D ligand expression in T-ALL has not previously been interrogated. Here we report that NKG2D-ligands are expressed in T-ALL cell lines and primary T-ALL. We confirm that NKG2D-ligands are frequently surface expressed in primary AML, albeit at relatively low levels. Utilizing CAR T cells incorporating the natural immune receptor NKG2D as the antigen binding domain, we demonstrate striking in vitro activity of CAR T cells targeting NKG2D-ligands against AML and T-ALL cell lines and show that even low-level ligand expression in primary AML targets results in robust NKG2D-CAR activity. We found that NKG2D-ligand expression can be selectively enhanced in low-expressing AML cell lines and primary AML blasts via pharmacologic HDAC inhibition. Such pharmacologic NKG2D-ligand induction results in enhanced NKG2D-CAR anti-leukemic activity without affecting healthy PBMC, thereby providing rationale for the combination of HDAC-inhibitors with NKG2D-CAR T cell therapy as a potential strategy to achieve clinical NKG2D-CAR T cell efficacy in AML.


Subject(s)
Immunotherapy, Adoptive/methods , Leukemia, Myeloid, Acute/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/physiology , Cell Line, Tumor , Humans , Leukemia, Myeloid, Acute/immunology , Ligands , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , T-Lymphocytes/transplantation , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...