Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 9(11): e111060, 2014.
Article in English | MEDLINE | ID: mdl-25365521

ABSTRACT

Plk1 is a checkpoint protein whose role spans all of mitosis and includes DNA repair, and is highly conserved in eukaryotes from yeast to man. Consistent with this wide array of functions for Plk1, the cellular consequences of Plk1 disruption are diverse, spanning delays in mitotic entry, mitotic spindle abnormalities, and transient mitotic arrest leading to mitotic slippage and failures in cytokinesis. In this work, we present the in vitro and in vivo consequences of Plk1 inhibition in cancer cells using potent, selective small-molecule Plk1 inhibitors and Plk1 genetic knock-down approaches. We demonstrate for the first time that cellular senescence is the predominant outcome of Plk1 inhibition in some cancer cell lines, whereas in other cancer cell lines the dominant outcome appears to be apoptosis, as has been reported in the literature. We also demonstrate strong induction of DNA double-strand breaks in all six lines examined (as assayed by γH2AX), which occurs either during mitotic arrest or mitotic-exit, and may be linked to the downstream induction of senescence. Taken together, our findings expand the view of Plk1 inhibition, demonstrating the occurrence of a non-apoptotic outcome in some settings. Our findings are also consistent with the possibility that mitotic arrest observed as a result of Plk1 inhibition is at least partially due to the presence of unrepaired double-strand breaks in mitosis. These novel findings may lead to alternative strategies for the development of novel therapeutic agents targeting Plk1, in the selection of biomarkers, patient populations, combination partners and dosing regimens.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Cellular Senescence/drug effects , Cellular Senescence/genetics , DNA Damage/drug effects , Mitosis/genetics , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Humans , Mitosis/drug effects , RNA Interference , RNA, Small Interfering/genetics , Polo-Like Kinase 1
2.
J Med Chem ; 55(1): 197-208, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22070629

ABSTRACT

This article describes the discovery of a series of potent inhibitors of Polo-like kinase 1 (PLK1). Optimization of this benzolactam-derived chemical series produced an orally bioavailable inhibitor of PLK1 (12c, MLN0905). In vivo pharmacokinetic-pharmacodynamic experiments demonstrated prolonged mitotic arrest after oral administration of 12c to tumor bearing nude mice. A subsequent efficacy study in nude mice achieved tumor growth inhibition or regression in a human colon tumor (HT29) xenograft model.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzazepines/chemical synthesis , Cell Cycle Proteins/antagonists & inhibitors , Lactams/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Thiones/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Benzazepines/pharmacokinetics , Benzazepines/pharmacology , Biological Availability , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Lactams/pharmacokinetics , Lactams/pharmacology , Mice , Mice, Nude , Mitosis , Models, Molecular , Neoplasm Transplantation , Protein Conformation , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiones/pharmacokinetics , Thiones/pharmacology , Transplantation, Heterologous , Polo-Like Kinase 1
3.
Cancer Res ; 70(11): 4318-26, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20460535

ABSTRACT

Multiple pathways have been proposed to explain how proteasome inhibition induces cell death, but mechanisms remain unclear. To approach this issue, we performed a genome-wide siRNA screen to evaluate the genetic determinants that confer sensitivity to bortezomib (Velcade (R); PS-341). This screen identified 100 genes whose knockdown affected lethality to bortezomib and to a structurally diverse set of other proteasome inhibitors. A comparison of three cell lines revealed that 39 of 100 genes were commonly linked to cell death. We causally linked bortezomib-induced cell death to the accumulation of ASF1B, Myc, ODC1, Noxa, BNIP3, Gadd45alpha, p-SMC1A, SREBF1, and p53. Our results suggest that proteasome inhibition promotes cell death primarily by dysregulating Myc and polyamines, interfering with protein translation, and disrupting essential DNA damage repair pathways, leading to programmed cell death.


Subject(s)
Antineoplastic Agents/pharmacology , Boronic Acids/pharmacology , Cell Death/drug effects , Protease Inhibitors/pharmacology , Proteasome Inhibitors , Pyrazines/pharmacology , RNA, Small Interfering/genetics , Bortezomib , Cell Death/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , DNA Damage , Gene Knockdown Techniques , HCT116 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Protein Serine-Threonine Kinases/biosynthesis , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-myc/biosynthesis , Proto-Oncogene Proteins c-myc/genetics , Ribosomes/drug effects , TOR Serine-Threonine Kinases , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...