Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cytogenet ; 2: 27, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-20021661

ABSTRACT

Autism spectrum disorders have been associated with maternally derived duplications that involve the imprinted region on the proximal long arm of chromosome 15. Here we describe a boy with a chromosome 15 duplication arising from a 3:1 segregation error of a paternally derived translocation between chromosome 15q13.2 and chromosome 9q34.12, which led to trisomy of chromosome 15pter-q13.2 and 9q34.12-qter. Using array comparative genome hybridization, we localized the breakpoints on both chromosomes and sequence homology suggests that the translocation arose from non-allelic homologous recombination involving the low copy repeats on chromosome 15. The child manifests many characteristics of the maternally-derived duplication chromosome 15 phenotype including developmental delays with cognitive impairment, autism, hypotonia and facial dysmorphisms with nominal overlap of the most general symptoms found in duplications of chromosome 9q34. This case suggests that biallelically expressed genes on proximal 15q contribute to the idic(15) autism phenotype.

2.
BMC Genet ; 9: 2, 2008 Jan 04.
Article in English | MEDLINE | ID: mdl-18177502

ABSTRACT

BACKGROUND: Maternally-derived duplications that include the imprinted region on the proximal long arm of chromosome 15 underlie a complex neurobehavioral disorder characterized by cognitive impairment, seizures and a substantial risk for autism spectrum disorders1. The duplications most often take the form of a supernumerary pseudodicentric derivative chromosome 15 [der(15)] that has been called inverted duplication 15 or isodicentric 15 [idic(15)], although interstitial rearrangements also occur. Similar to the deletions found in most cases of Angelman and Prader Willi syndrome, the duplications appear to be mediated by unequal homologous recombination involving low copy repeats (LCR) that are found clustered in the region. Five recurrent breakpoints have been described in most cases of segmental aneuploidy of chromosome 15q11-q13 and previous studies have shown that most idic(15) chromosomes arise through BP3:BP3 or BP4:BP5 recombination events. RESULTS: Here we describe four duplication chromosomes that show evidence of atypical recombination events that involve regions outside the common breakpoints. Additionally, in one patient with a mosaic complex der(15), we examined homologous pairing of chromosome 15q11-q13 alleles by FISH in a region of frontal cortex, which identified mosaicism in this tissue and also demonstrated pairing of the signals from the der(15) and the normal homologues. CONCLUSION: Involvement of atypical BP in the generation of idic(15) chromosomes can lead to considerable structural heterogeneity.


Subject(s)
Chromosome Aberrations , Chromosomes, Human, Pair 15/genetics , Gene Duplication , Isochromosomes/genetics , Angelman Syndrome/genetics , Blotting, Southern , Brain/ultrastructure , Cell Line , Chromosomes, Artificial, Bacterial , DNA Methylation , Female , Genotype , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Male , Prader-Willi Syndrome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...