Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(4): e0257746, 2022.
Article in English | MEDLINE | ID: mdl-35421090

ABSTRACT

Verification of clonal identity of hop (Humulus lupulus L.) cultivars within breeding programs and germplasm collections is vital to conserving genetic resources. Accurate and economic DNA-based tools are needed in dioecious hop to confirm identity and parentage, neither of which can be reliably determined from morphological observations. In this study, we developed two fingerprinting sets for hop: a 9-SSR fingerprinting set containing high-core repeats that can be run in a single PCR reaction and a kompetitive allele specific PCR (KASP) assay of 25 single nucleotide polymorphisms (SNPs). The SSR set contains a sex-linked primer pair, HI-AGA7, that was used to genotype 629 hop accessions from the US Department of Agriculture (USDA) National Clonal Germplasm Repository (NCGR), the USDA Forage Seed and Cereal Research (FSCR), and the University of Nebraska-Lincoln (UNL) collections. The SSR set identified unique genotypes except for 89 sets of synonymous samples. These synonyms included: cultivars with different designations, the same cultivars from different sources, heat-treated clones, and clonal variants. Population structure analysis clustered accessions into wild North American (WNA) and cultivated groups. Diversity was slightly higher in the cultivated samples due to larger sample size. Parentage and sib-ship analyses were used to identify true-to-type cultivars. The HI-AGA7 marker generated two male- and nine female-specific alleles among the cultivated and WNA samples. The SSR and KASP fingerprinting sets were compared in 190 samples consisting of cultivated and WNA accession for their ability to confirm identity and assess diversity and population structure. The SSR fingerprinting set distinguished cultivars, selections and WNA accessions while the KASP assays were unable to distinguish the WNA samples and had lower diversity estimates than the SSR set. Both fingerprinting sets are valuable tools for identity confirmation and parentage analysis in hop for different purposes. The 9-SSR assay is cost efficient when genotyping a small number of wild and cultivated hop samples (<96) while the KASP assay is easy to interpret and cost efficient for genotyping a large number of cultivated samples (multiples of 96).


Subject(s)
Humulus , Alleles , Genetic Variation , Genotype , Humulus/genetics , Microsatellite Repeats/genetics , Phylogeny , Plant Breeding , Polymerase Chain Reaction
2.
G3 (Bethesda) ; 10(10): 3729-3740, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32769135

ABSTRACT

A Rosaceae family-level candidate gene approach was used to identify genes associated with sugar content in blackberry (Rubus subgenus Rubus). Three regions conserved among apple (Malus × domestica), peach (Prunus persica), and alpine strawberry (Fragaria vesca) were identified that contained previously detected sweetness-related quantitative trait loci (QTL) in at least two of the crops. Sugar related genes from these conserved regions and 789 sugar-associated apple genes were used to identify 279 Rubus candidate transcripts. A Hyb-Seq approach was used in conjunction with PacBio sequencing to generate haplotype level sequence information of sugar-related genes for 40 cultivars with high and low soluble solids content from the University of Arkansas and USDA blackberry breeding programs. Polymorphisms were identified relative to the 'Hillquist' blackberry (R. argutus) and ORUS 4115-3 black raspberry (R. occidentalis) genomes and tested for their association with soluble solids content (SSC). A total of 173 alleles were identified that were significantly (α = 0.05) associated with SSC. KASP genotyping was conducted for 92 of these alleles on a validation set of blackberries from each breeding program and 48 markers were identified that were significantly associated with SSC. One QTL, qSSC-Ruh-ch1.1, identified in both breeding programs accounted for an increase of 1.5 °Brix and the polymorphisms were detected in the intron space of a sucrose synthase gene. This discovery represents the first environmentally stable sweetness QTL identified in blackberry. The approach demonstrated in this study can be used to develop breeding tools for other crops that have not yet benefited directly from the genomics revolution.


Subject(s)
Fragaria , Malus , Rosaceae , Rubus , DNA , Fragaria/genetics , Fruit , Malus/genetics , Plant Breeding , Rosaceae/genetics , Rubus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...