Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 15(8): 2306-2321, 2021 08.
Article in English | MEDLINE | ID: mdl-33649551

ABSTRACT

The gut microbiota is a complex ecological community that plays multiple critical roles within a host. Known intrinsic and extrinsic factors affect gut microbiota structure, but the influence of host genetics is understudied. To investigate the role of host genetics upon the gut microbiota structure, we performed a longitudinal study in which we evaluated the hindgut microbiota and its association with animal growth and immunity across life. We evaluated three different growth stages in an Angus-Brahman multibreed population with a graduated spectrum of genetic variation, raised under variable environmental conditions and diets. We found the gut microbiota structure was changed significantly during growth when preweaning, and fattening calves experienced large variations in diet and environmental changes. However, regardless of the growth stage, we found gut microbiota is significantly influenced by breed composition throughout life. Host genetics explained the relative abundances of 52.2%, 40.0%, and 37.3% of core bacterial taxa at the genus level in preweaning, postweaning, and fattening calves, respectively. Sutterella, Oscillospira, and Roseburia were consistently associated with breed composition at these three growth stages. Especially, butyrate-producing bacteria, Roseburia and Oscillospira, were associated with nine single-nucleotide polymorphisms (SNPs) located in genes involved in the regulation of host immunity and metabolism in the hindgut. Furthermore, minor allele frequency analysis found breed-associated SNPs in the short-chain fatty acids (SCFAs) receptor genes that promote anti-inflammation and enhance intestinal epithelial barrier functions. Our findings provide evidence of dynamic and lifelong host genetic effects upon gut microbiota, regardless of growth stages. We propose that diet, environmental changes, and genetic components may explain observed variation in critical hindgut microbiota throughout life.


Subject(s)
Bacteria/classification , Cattle/genetics , Gastrointestinal Microbiome , Animals , Cattle/growth & development , Cattle/immunology , Fatty Acids, Volatile , Longitudinal Studies
2.
Front Microbiol ; 10: 1846, 2019.
Article in English | MEDLINE | ID: mdl-31456774

ABSTRACT

Antibiotics have been widely used in livestock to treat and prevent bacterial diseases. However, use of antibiotics has led to the emergence of antibiotic resistant microorganisms (ARMs) in food animals. Due to the decreased efficacy of antibiotics, alternatives to antibiotics that can reduce infectious diseases in food animals to enhance animal health and growth performance are urgently required. Here, we show that animal genetics is associated with the hindgut microbiome, which is related to fat deposition and beta-lactam resistance in the gastrointestinal tract. We investigated the hindgut microbiota structure in 95 postweaning heifers belonging to the unique multibreed Angus-Brahman herd with breed composition ranging from 100% Angus to 100% Brahman. The hindgut microbial composition of postweaning heifers differed among breed groups. The mucin-degrading bacterium Akkermansia known for promoting energy expenditure was enriched in Brahman calves that contained less intramuscular fat content, while butyrate-producing bacterium Faecalibacterium was linearly positively correlated with Angus proportion. Moreover, the higher relative abundance of beta-lactam resistant genes including ampC gene and arcA gene was associated with the greater Brahman proportion. As the first study aimed at understanding changes in hindgut microbiota among beef cattle with linear gradient of breed composition and its association with marbling in meat, our results suggest that the effects of animal genetics on the gut microbiota structure is associated with fat deposition and potentially a factor affecting the gut antimicrobial resistance.

3.
PLoS One ; 11(2): e0148518, 2016.
Article in English | MEDLINE | ID: mdl-26849041

ABSTRACT

Each year Shiga toxin-producing Escherichia coli (STEC) are responsible for 2.8 million acute illnesses around the world and > 250,000 cases in the US. Lowering the prevalence of this pathogen in animal reservoirs has the potential to reduce STEC outbreaks in humans by controlling its entrance into the food chain. However, factors that modulate the colonization and persistence of STEC in beef cattle remain largely unidentified. This study evaluated if animal physiological factors such as age, breed, sex, and weight gain influenced the shedding of STEC in beef cattle. A cohort of beef calves (n = 260) from a multi-breed beef calf population was sampled every three months after birth to measure prevalence and concentration of STEC during the first year of life. Metagenomic analysis was also used to understand the association between the STEC colonization and the composition of gut microflora. This study identified that beef calves were more likely to shed STEC during the first 6 months and that STEC shedding decreased as the animal matured. Animal breed group, sex of the calf, and average weight gain were not significantly associated with STEC colonization. The metagenomic analysis revealed for the first time that STEC colonization was correlated with a lower diversity of gut microflora, which increases as the cattle matured. Given these findings, intervention strategies that segregate younger animals, more likely to be colonized by STEC from older animals that are ready to be harvested, could be investigated as a method to reduce zoonotic transmission of STEC from cattle to humans.


Subject(s)
Cattle Diseases/microbiology , Cattle/microbiology , Escherichia coli Infections/veterinary , Shiga-Toxigenic Escherichia coli/isolation & purification , Age Factors , Animals , Bacterial Shedding , Body Weight , Cattle Diseases/epidemiology , DNA, Bacterial/classification , DNA, Bacterial/isolation & purification , Escherichia coli Infections/epidemiology , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Logistic Models , Male , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...