Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Anim Sci ; 8: txae093, 2024.
Article in English | MEDLINE | ID: mdl-38979117

ABSTRACT

This study evaluated the association between the proportion of Brahman genetics and productivity of Brahman-Angus cows at weaning using a 31-yr dataset containing 6,312 cows and 5,405 pregnancies. Cows were contemporaneously reared and enrolled in yearly breeding seasons under subtropical conditions of North-Central Florida. They were evenly distributed in six-breed groups (G) according to the proportion of Brahman genetics: G0% to 19%, G21% to 34%, G38% (Brangus), G41% to 59%, G63% to 78%, and G81% to 100%. The proportion of cows calving (84.9%) did not differ across the six-breed groups. However, cows in the G81% to 100% weaned fewer calves (90.8%) than cows in the G0% to 19% and G21% to 34% (95.7%, each). The weaning rate of cows in the G38% (94.3%), G41% to 59% (94.2%), and G63% to 78% (93.0%) was intermediate between these three breed groups. The preweaning calf mortality was greater for cows in the G81% to 100% (9.2%) than cows in the G0% to 19% and G21% to 34% (4.3%, each), but intermediate for cows in the G38% (5.7%), G41% to 59% (5.8%), and G63% to 78% (7.0%). Cows in the G81% to 100% also weaned lighter calves (220.6 kg) than cows in the G0% to 19% (245.2 kg), G21% to 34% (250.2 kg), G38% (247.9 kg), G41% to 59% (252.5 kg), and G63% to 78% (245.2 kg). Cows in the G0% to 19% weaned lighter calves than cows with 21% to 78% of Brahman genetics. The 205-d adjusted weaning weight evidenced the less productive results of cows in G0% to 19% and G81% to 100% compared with other genetic groups, as they calved at the fastest and slowest rate, respectively. Thus, the 205-d adjusted weaning weight eliminated this bias. Additionally, younger cows weaned lighter calves; and male calves were heavier at weaning than female calves. Both parity order of cow and calf sex altered the magnitude of the described association between breed group of cows and calf weaning weights. Overall, after adjusting for weaning rate and age of calves at weaning, the number of kilograms produced per cow submitted to reproduction was less for cows in the G0% to 19% (191.1 kg) and G81% to 100 (181.8 kg) compared with cows in the G21% to 34 (197.0 kg), G38 (195.9 kg), G41% to 59 (199.7), and G63% to 78 (196.2). Cows in the G81% to 100% were the least productive. Thus, a proportion of Brahman genetics between 21% and 78% ensured superior productivity of Brahman-Angus cows subjected to subtropical conditions.

2.
J Anim Sci ; 100(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36331079

ABSTRACT

Bos taurus × Bos indicus crosses are widespread in tropical and subtropical regions, nonetheless, quantitative information about the influence of B. indicus genetics on the reproductive performance of beef cattle is lacking. Herein, we determined the association between level of B. indicus genetics and reproduction from a 31-yr dataset comprising sequential breeding seasons of the University of Florida multibreed herd (n = 6,503 Angus × Brahman cows). The proportion of B. indicus genetics in this herd is evenly distributed by each 1/32nd or approximately 3-percentage points. From 1989 to 2020, the estrous cycle of cows was synchronized for artificial insemination (AI) based on detected estrus or timed-AI (TAI) using programs based on gonadotropin-releasing hormone and prostaglandin, and progestin/progesterone. All cows were exposed to natural service after AI and approximately 90-d breeding seasons, considering the day of AI as day 0. The proportion of B. indicus genetics of cows was associated negatively with pregnancy per AI, ranging from 51.6% for cows with 0%-19% of B. indicus genetics to 37.4% for cows with 81%-100% of B. indicus genetics. Similar association was found for estrous response at the end of the synchronization protocol, ranging from 66.3% to 38.4%, respectively. This reduced estrous response helped to explain the pregnancy results, once the pregnancy to AI of cows showing estrus was 2.3-fold greater than for those not showing estrus and submitted to TAI. Despite reduced pregnancy per AI, the increase in the proportion of B. indicus genetics of cows was not associated with a reduction in the proportion of pregnant cows at the end of the breeding season. Nevertheless, the interval from entering the breeding season to pregnancy was lengthened as the proportion of B. indicus genetics of cows increased. The median days to pregnancy was extended by 25 when the proportion of B. indicus genetics surpassed 78% compared with less than 20%. Thus, the increase in the proportion of B. indicus genetics of cows was related to a reduction in pregnancy per AI and lengthening the interval to attain pregnancy during the breeding season, but not with the final proportion of pregnant cows. As a result, reproductive management strategies directed specifically to cows with a greater proportion of B. indicus genetics are needed to improve the rate of pregnancy in beef herds.


Cow­calf operations in the tropics and sub-tropics have benefited from the environmental adaptation provided by Bos indicus genetics. However, reproductive performance has been a cause of concern, although poorly quantified. This study characterized how much the B. indicus genetics in crossbred cows influence herd reproduction. We analyzed data from cows with known proportions of Angus and Brahman genetics, from the same crossbred herd, for 31 sequential breeding seasons. The increase in the proportion of B. indicus genetics reduced estrous response and pregnancy per artificial insemination after estrous synchronization, but not the proportion of pregnant cows at the end of the breeding season. Interval from the beginning of the breeding season to pregnancy was extended by 25 d when the proportion of B. indicus genetics surpassed 78%. In conclusion, reproductive management strategies directed specifically to cows with a greater proportion of B. indicus genetics are needed to improve the rate of pregnancy in beef herds.


Subject(s)
Dinoprost , Estrus Synchronization , Pregnancy , Female , Cattle/genetics , Animals , Estrus Synchronization/methods , Insemination, Artificial/veterinary , Insemination, Artificial/methods , Reproduction/genetics , Estrus , Progesterone , Gonadotropin-Releasing Hormone/genetics
3.
Front Microbiol ; 12: 772863, 2021.
Article in English | MEDLINE | ID: mdl-34745079

ABSTRACT

Calf diarrhea is one of the most concerning challenges facing both the dairy and beef cattle industry. Maintaining healthy gut microbiota is essential for preventing gastrointestinal disorders. Here, we observed significantly less bacterial richness in the abnormal feces with watery or hemorrhagic morphology compared to the normal solid feces. The normal solid feces showed high relative abundances of Osllospiraceae, Christensenellaceae, Barnesiella, and Lactobacillus, while the abnormal feces contained more bacterial taxa of Negativicutes, Tyzzerella, Parasutterella, Veillonella, Fusobacterium, and Campylobacter. Healthy calves had extensive bacterial-bacterial correlations, with negative correlation between Lactobacillus and potential diarrheagenic Escherichia coli-Shigella, but not in the abnormal feces. We isolated Lactobacillus species (L. reuteri, L. johnsonii, L. amylovorus, and L. animalis), with L. reuteri being the most abundant, from the healthy gut microbiota. Isolated Lactobacillus strains inhibited pathogenic strains including E. coli K88 and Salmonella Typhimurium. These findings indicate the importance of a diverse gut microbiota in newborn calf's health and provide multiple potential probiotics that suppress pathogen colonization in the gastrointestinal tract to prevent calf diarrhea.

SELECTION OF CITATIONS
SEARCH DETAIL
...