Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Polymers (Basel) ; 15(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36987254

ABSTRACT

We investigate mode coupling in a multimode graded-index microstructured polymer optical fiber (GI mPOF) with a solid core by solving the time-independent power flow equation (TI PFE). Using launch beams with various radial offsets, it is possible to calculate for such an optical fiber the transients of the modal power distribution, the length Lc at which an equilibrium mode distribution (EMD) is reached, and the length zs for establishing a steady-state distribution (SSD). In contrast to the conventional GI POF, the GI mPOF explored in this study achieves the EMD at a shorter length Lc. The earlier shift to the phase of slower bandwidth decrease would result from the shorter Lc. These results are helpful for the implementation of multimode GI mPOFs as a part of communications and optical fiber sensory systems.

3.
Opt Express ; 30(14): 24667-24675, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-36237015

ABSTRACT

By solving the time-independent power flow equation (TI PFE), we study mode coupling in a multimode W-type microstructured polymer optical fiber (mPOF) with a solid-core. The multimode W-type mPOF is created by modifying the cladding layer and reducing the core of a multimode singly clad (SC) mPOF. For such optical fiber, the angular power distributions, the length Lc at which an equilibrium mode distribution (EMD) is achieved, and the length zs for establishing a steady state distribution (SSD) are determined for various arrangements of the inner cladding's air-holes and different launch excitations. This information is useful for the implement of multimode W-type mPOFs in telecommunications and optical fiber sensors.

4.
Polymers (Basel) ; 13(23)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34883721

ABSTRACT

By solving the time-dependent power flow equation, we present a novel approach for evaluating the bandwidth in a multimode step-index polymer photonic crystal fiber (SI PPCF) with a solid core. The bandwidth of such fiber is determined for various layouts of air holes and widths of Gaussian launch beam distribution. We found that the lower the NA of SI PPCF, the larger the bandwidth. The smaller launch beam leads to a higher bandwidth for short fibers. The influence of the width of the launch beam distribution on bandwidth lessens as the fiber length increases. The bandwidth tends to its launch independent value at a particular fiber length. This length denotes the onset of the steady state distribution (SSD). This information is useful for multimode SI PPCF applications in telecommunications and optical fiber sensing applications.

5.
Polymers (Basel) ; 13(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34833273

ABSTRACT

The bandwidth of multimode W-type plastic optical fibers (POFs) with graded-index (GI) core distribution is investigated by solving the time-dependent power flow equation. The multimode W-type GI POF is designed from a multimode single-clad (SC) GI POF fiber upon modification of the cladding layer of the latter. Results show how the bandwidth in W-type GI POFs can be enhanced by increasing the wavelength for different widths of the intermediate layer and refractive indices of the outer cladding. These fibers are characterized according to their apparent efficiency to reduce modal dispersion and increase bandwidth.

6.
Opt Express ; 29(19): 29587-29594, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34614700

ABSTRACT

A new method is proposed for investigating the bandwidth in multimode graded-index plastic optical fibers (GI POFs). By numerically solving the time-dependent power flow equation, bandwidth is reported for a varied launch conditions (radial offsets) of multimode GI POF. Our theoretical results are supported by the experimental results which show that bandwidth decreases with increasing radial offset. This decrease is more pronounced at short fiber lengths. At fiber length close to the coupling length Lc at which an equilibrium mode distribution (EMD) is achieved, this decrease becomes slower, indicating that mode coupling improves bandwidth at larger fiber lengths. With further increase of fiber length, bandwidth becomes nearly independent of the radial offset, indicating that a steady-state distribution (SSD) is achieved. Such a fiber characterization can be applied to optimize fiber performance in POF links.

7.
Appl Opt ; 53(30): 6999-7003, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25402786

ABSTRACT

By experimental measurement and from a numerical solution to the time-dependent power flow equation, the frequency response, bandwidth, mode coupling, and mode-dependent attenuation are determined for a low-numerical-aperture (NA) plastic optical fiber. Frequency response and bandwidth are specified as a function of fiber length. Numerical results are verified against experimental measurements. Mode coupling and modal attenuation are found to differ substantially between two fiber varieties of the same type (both low-NA, step-index, and plastic), implying their preferential suitability that is application-specific.

8.
Appl Opt ; 52(6): 1117-21, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23434979

ABSTRACT

The power-flow equation is employed to calculate bandwidth of step-index plastic optical fibers (POFs) for different launch conditions. The outcome specifies bandwidth as a function of the mean input angle and width of the launch-beam distribution. For small distribution widths, bandwidth is shown to decrease with increasing mean input angle of the launch-beam distribution. For large distribution widths, bandwidth becomes independent of the launch angle. Launch-beam distribution, mode-dependent attenuation, and mode dispersion and coupling in POFs strongly influence the bandwidth of data transmission systems.

9.
Appl Opt ; 50(21): 4170-3, 2011 Jul 20.
Article in English | MEDLINE | ID: mdl-21772404

ABSTRACT

Using the power flow equation, the state of mode coupling in 100-400 µm core step-index silica optical fibers is investigated in this article. Results show the coupling length L(c) at which the equilibrium mode distribution is achieved and the length z(s) of the fiber required for achieving the steady-state mode distribution. Functional dependences of these lengths on the core radius and wavelength are also given. Results agree well with those obtained using a long-established calculation method. Since large core silica optical fibers are used at short distances (usually at lengths of up to 10 m), the light they transmit is at the stage of coupling that is far from the equilibrium and steady-state mode distributions.

10.
Appl Opt ; 49(27): 5076-80, 2010 Sep 20.
Article in English | MEDLINE | ID: mdl-20856280

ABSTRACT

By using the power flow equation, we have examined the state of mode coupling in strained and unstrained step-index glass optical fibers. Strained fibers show stronger mode coupling than their unstrained counterparts of the same type. As a result, the coupling length where equilibrium mode distribution is achieved and the length of fiber required for achieving the steady-state mode distribution are shorter for strained than for unstrained fibers.

SELECTION OF CITATIONS
SEARCH DETAIL
...