Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(13): 16714-16722, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36961995

ABSTRACT

Selective oxidation reactions are an important class of the current chemical industry and will be highly important for future sustainable chemical production. Especially, the selective oxidation of primary alcohols is expected to be of high future interest, as alcohols can be obtained on technical scales from biomass fermentation. The oxidation of primary alcohols produces aldehydes, which are important intermediates. While selective methanol oxidation is industrially established, the commercial catalyst suffers from deactivation. Ethanol selective oxidation is not commercialized but would give access to sustainable acetaldehyde production when using renewable ethanol. In this work, it is shown that employing 2D MXenes as building blocks allows one to design a nanostructured oxide catalyst composed of mixed valence vanadium oxides, which outperforms on both reactions known materials by nearly an order of magnitude in activity, while showing high selectivity and stability. The study shows that the synthesis route employing 2D materials is key to obtain these attractive catalysts. V4C3Tx MXene structured as an aerogel precursor needs to be employed and mildly oxidized in an alcohol and oxygen atmosphere to result in the aspired nanostructured catalyst composed of mixed valence VO2, V6O13, and V3O7. Very likely, the bulk stable reduced valence state of the material together coupled with the nanorod arrangement allows for unprecedented oxygen mobility as well as active sites and results in an ultra-active catalyst.

2.
Angew Chem Int Ed Engl ; 60(11): 5898-5906, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33497000

ABSTRACT

A new strategy affords "non-nano" carbon materials as dehydrogenation catalysts that perform similarly to nanocarbons. Polymer-based carbon precursors that combine a soft-template approach with ion adsorption and catalytic graphitization are key to this synthesis strategy, thus offering control over macroscopic shape, texture, and crystallinity and resulting in a hybrid amorphous/graphitic carbon after pyrolysis. From this intermediate the active carbon catalyst is prepared by removing the amorphous parts of the hybrid carbon materials via selective oxidation. The oxidative dehydrogenation of ethanol was chosen as test reaction, which shows that fine-tuning the synthesis of the new carbon catalysts allows to obtain a catalytic material with an attractive high selectivity (82 %) similar to a carbon nanotube reference, while achieving 10 times higher space-time yields at 330 °C. This new class of carbon materials is accessible via a technically scalable, reproducible synthetic pathway and exhibits spherical particles with diameters around 100 µm, allowing unproblematic handling similar to classic non-nano catalysts.

3.
Chemphyschem ; 12(18): 3578-83, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22147498

ABSTRACT

The Mo(10-x)V(x)O(y) solid-solution systems (0≤x≤10) were studied by electron paramagnetic resonance spectroscopy. The results show the existence of paramagnetic vanadyl VO(2+) species, whose concentration becomes maximal for Mo(5)V(5)O(y·). A quantitative analysis of the [VO(2+)] concentration as a function of the Mo/V ratio allows it to characterize the prevailing defect chemistry in the Mo(10-x)V(x)O(y) system. In this respect, the semi-conducting properties of Mo(10-x)V(x)O(y) are p-type in an interval of Mo(9)V(1)O(y)-Mo(5)V(5)O(y) and switch into n-type because of the conduction electrons in a composition range of Mo(5)V(5)O(y)-Mo(1)V(9)O(y). Highest catalytic activity is obtained when vanadium acts as an acceptor center and oxygen vacancies ν(··)(O) are formed for reasons of charge compensation. In addition to the surface, ν(··)(O) and VO(2+) centers in the bulk have to be considered too for heterogeneous catalysis.

4.
Nanoscale ; 3(3): 1102-12, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21183989

ABSTRACT

Cuprous oxide agglomerates composed of 4-10 nm Cu2O nanoparticles were deposited on multiwalled carbon nanotubes (MWCNTs) and on ZnO/MWCNTs to give binary [Cu2O/MWCNT] and ternary [Cu2O/ZnO/MWCNT] composites. Di-aqua-bis[2-(methoxyimino)propanoato]copper Cu[O2CCCH3NOMe](2)·2H2O 1 in DMF was used as single source precursor for the deposition of nanoscaled Cu2O. The precursor decomposes either in air or under argon to yield CuO2 by in situ redox reaction. Thermogravimetric coupled mass spectroscopic analysis (TG-MS) of 1 revealed that methanol formed during the decomposition of 1 acts as a potential in situ reducing agent. Scanning electron microscopy (SEM) of the binary [Cu2O/MWCNT] nano-composite shows an increase of cuprous oxide loading depending on the precursor amount, along the periphery of the MWCNTs as well as formation of larger particle agglomerates. Transmission electron microscopy (TEM) of the sample shows crystalline domains of size 4-10 nm surrounded by an amorphous region within the larger particles. SEM and TEM of ternary [Cu2O/ZnO/MWCNT] clearly reveal that Cu2O nanoparticles are primarily deposited on ZnO rather than on MWCNTs. The catalytic activities of the [Cu2O/MWCNT] and [Cu2O/ZnO/MWCNT] binary and ternary composites were studied for the selective partial oxidation of ethanol to acetaldehyde with molecular oxygen. While using binary [Cu2O/MWCNT] (13.8 wt% Cu) as catalyst, acetaldehyde was obtained with a yield of 87% at 355 °C (selectivity 96% and conversion 91%). When nanoscale ZnO is present, the resulting [Cu2O/ZnO/MWCNT] composite shows preferential hydrogen and CO2 formation due to the fact that the dehydrogenation and total oxidation pathway is more favoured compared to the binary composite. Significant morphological changes of the catalyst during the catalytic process were observed.


Subject(s)
Copper/chemistry , Ethanol/chemistry , Nanostructures/chemistry , Zinc Oxide/chemistry , Catalysis , Materials Testing , Nanostructures/ultrastructure , Oxidation-Reduction , Particle Size
5.
Phys Chem Chem Phys ; 9(27): 3577-89, 2007 Jul 21.
Article in English | MEDLINE | ID: mdl-17612723

ABSTRACT

The major objective of this research project was to reach a microscopic understanding of the structure, function and dynamics of V-Mo-(W) mixed oxides for the partial oxidation of acrolein to acrylic acid. Different model catalysts (from binary and ternary vanadium molybdenum oxides up to quaternary oxides with additional tungsten) were prepared via a solid state preparation route and hydrochemical preparation of precursors by spray-drying or crystallisation with subsequent calcination. The phase composition was investigated ex situ by XRD and HR-TEM. Solid state prepared samples are characterised by crystalline phases associated to suitable phase diagrams. Samples prepared from crystallised and spray-dried precursors show crystalline phases which are not part of the phase diagram. Amorphous or nanocrystalline structures are only found in tungsten doped samples. The kinetics of the partial oxidation as well as the catalysts' structure have been studied in situ by XAS, XRD, temperature programmed reaction and reduction as well as by a transient isotopic tracing technique (SSITKA). The reduction and re-oxidation kinetics of the bulk phase have been evaluated by XAS. A direct influence not only of the catalysts' composition but also of the preparation route is shown. Altogether correlations are drawn between structure, oxygen dynamics and the catalytic performance in terms of activity, selectivity and long-term stability. A model for the solid state behaviour under reaction conditions has been developed. Furthermore, isotope exchange experiments provided a closer image of the mechanism of the selective acrolein oxidation. Based on the in situ characterisation in combination with micro kinetic modelling a detailed reaction model which describes the oxygen exchange and the processes at the catalyst more precisely is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...