Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 12341, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37524891

ABSTRACT

This paper addresses the question of the brain's critical dynamics after an injury such as a stroke. It is hypothesized that the healthy brain operates near a phase transition (critical point), which provides optimal conditions for information transmission and responses to inputs. If structural damage could cause the critical point to disappear and thus make self-organized criticality unachievable, it would offer the theoretical explanation for the post-stroke impairment of brain function. In our contribution, however, we demonstrate using network models of the brain, that the dynamics remain critical even after a stroke. In cases where the average size of the second-largest cluster of active nodes, which is one of the commonly used indicators of criticality, shows an anomalous behavior, it results from the loss of integrity of the network, quantifiable within graph theory, and not from genuine non-critical dynamics. We propose a new simple model of an artificial stroke that explains this anomaly. The proposed interpretation of the results is confirmed by an analysis of real connectomes acquired from post-stroke patients and a control group. The results presented refer to neurobiological data; however, the conclusions reached apply to a broad class of complex systems that admit a critical state.


Subject(s)
Connectome , Stroke , Humans , Brain/physiology , Models, Neurological , Nerve Net/physiology
2.
Article in English | MEDLINE | ID: mdl-26382348

ABSTRACT

We compare two methods of eigeninference from large sets of data. Our analysis points at the superiority of our eigeninference method based on one-point Green's functions and Padé approximants over a method based on fluctuations and two-point Green's functions. The first method is orders of magnitude faster than the second one; moreover, we found a source of potential instability of the second method and identified it as arising from the spurious zero and negative modes of the estimator for the variance operator of a certain multidimensional Gaussian distribution, inherent for that method. We also present eigeninference based on spectral moments of negative orders, for strictly positive spectra. Finally, we compare the cases of eigeninference of real-valued and complex-valued correlated Wishart distributions, reinforcing our conclusions on the advantage of the one-point Green's function method.

SELECTION OF CITATIONS
SEARCH DETAIL
...