Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Theor Appl Genet ; 76(3): 398-404, 1988 Sep.
Article in English | MEDLINE | ID: mdl-24232204

ABSTRACT

Two maize (Zea mays L.) populations, AS1(S) and ECR-A, were evaluated for allozyme frequency changes associated with selection for improved seedling emergence, early season vigor and early maturity. Eleven marker loci were examined and four loci were used for indirect selection in an attempt to modify cold tolerance and maturity. Allozyme-selected divergent subpopulations were produced by compositing selected S1 progeny from cycle one (C1) of AS1(S) and from C2 of ECR-A. These subpopulations and S1 generations from all cycles resulting from phenotypic selection, ECR-A C1 through C7 and AS1(S) CO through C6, were tested in cold tolerance and agronomic performance trials over five environments in 1986. Seedling emergence and seedling dry weight did not improve with phenotypic selection in ECR-A, while plant height, ear height, grain yield, grain moisture, days to mid-silk and days to mid-pollen were reduced significantly. Contrasts between divergent allozyme-selected subpopulations from ECR-A were significant for grain moisture and mid-pollen date. For AS1(S), seeding emergence increased, while plant and ear height decreased with phenotypic selection. Contrasts between allozyme-selected subpopulations were significant for plant and ear height. Changes associated with marker-based selection for AS1(S) were not in the same direction as with phenotypic selection. Selection for favorable allozyme genotypes may be effective in changing certain traits in populations that have been modified by direct selection, however results may not be predictable.

SELECTION OF CITATIONS
SEARCH DETAIL
...