Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 127(18): 186001, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34767414

ABSTRACT

Understanding the mechanisms of proton energy deposition in matter and subsequent damage formation is fundamental to radiation science. Here we exploit the picosecond (10^{-12} s) resolution of laser-driven accelerators to track ultrafast solvation dynamics for electrons due to proton radiolysis in liquid water (H_{2}O). Comparing these results with modeling that assumes initial conditions similar to those found in photolysis reveals that solvation time due to protons is extended by >20 ps. Supported by magnetohydrodynamic theory this indicates a highly dynamic phase in the immediate aftermath of the proton interaction that is not accounted for in current models.

2.
Phys Rev E ; 101(5-1): 053210, 2020 May.
Article in English | MEDLINE | ID: mdl-32575346

ABSTRACT

We present an in-depth analysis of an ultrafast electron trajectory type that produces attosecond electromagnetic pulses in both the reflected and forward directions during normal incidence, relativistic laser-plasma interactions. Our particle-in-cell simulation results show that for a target which is opaque to the frequency of the driving laser pulse the emission trajectory is synchrotronlike but differs significantly from the previously identified figure-eight type which produces bright attosecond bursts exclusively in the reflected direction. The origin and characteristics of this trajectory type are explained in terms of the driving electromagnetic fields, the opacity of the plasma, and the conservation of canonical momentum.

4.
Phys Rev Lett ; 120(7): 074801, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29542949

ABSTRACT

We report on the experimental studies of laser driven ion acceleration from a double-layer target where a near-critical density target with a few-micron thickness is coated in front of a nanometer-thin diamondlike carbon foil. A significant enhancement of proton maximum energies from 12 to ∼30 MeV is observed when a relativistic laser pulse impinges on the double-layer target under linear polarization. We attributed the enhanced acceleration to superponderomotive electrons that were simultaneously measured in the experiments with energies far beyond the free-electron ponderomotive limit. Our interpretation is supported by two-dimensional simulation results.

5.
Phys Rev E ; 94(2-1): 023203, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27627403

ABSTRACT

The collisional (or free-free) absorption of soft x rays in warm dense aluminium remains an unsolved problem. Competing descriptions of the process exist, two of which we compare to our experimental data here. One of these is based on a weak scattering model, another uses a corrected classical approach. These two models show distinctly different behaviors with temperature. Here we describe experimental evidence for the absorption of 26-eV photons in solid density warm aluminium (T_{e}≈1 eV). Radiative x-ray heating from palladium-coated CH foils was used to create the warm dense aluminium samples and a laser-driven high-harmonic beam from an argon gas jet provided the probe. The results indicate little or no change in absorption upon heating. This behavior is in agreement with the prediction of the corrected classical approach, although there is not agreement in absolute absorption value. Verifying the correct absorption mechanism is decisive in providing a better understanding of the complex behavior of the warm dense state.

6.
Phys Rev Lett ; 116(8): 083901, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26967416

ABSTRACT

The microscopic dynamics of laser-driven coherent synchrotron emission transmitted through thin foils are investigated using particle-in-cell simulations. For normal incidence interactions, we identify the formation of two distinct electron nanobunches from which emission takes place each half-cycle of the driving laser pulse. These emissions are separated temporally by 130 as and are dominant in different frequency ranges, which is a direct consequence of the distinct characteristics of each electron nanobunch. This may be exploited through spectral filtering to isolate these emissions, generating electromagnetic pulses of duration ∼70 as.

7.
Nat Commun ; 7: 10642, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26861592

ABSTRACT

Tracking primary radiation-induced processes in matter requires ultrafast sources and high precision timing. While compact laser-driven ion accelerators are seeding the development of novel high instantaneous flux applications, combining the ultrashort ion and laser pulse durations with their inherent synchronicity to trace the real-time evolution of initial damage events has yet to be realized. Here we report on the absolute measurement of proton bursts as short as 3.5±0.7 ps from laser solid target interactions for this purpose. Our results verify that laser-driven ion acceleration can deliver interaction times over a factor of hundred shorter than those of state-of-the-art accelerators optimized for high instantaneous flux. Furthermore, these observations draw ion interaction physics into the field of ultrafast science, opening the opportunity for quantitative comparison with both numerical modelling and the adjacent fields of ultrafast electron and photon interactions in matter.

8.
Phys Rev Lett ; 115(19): 193903, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26588384

ABSTRACT

High order harmonics generated at relativistic intensities have long been recognized as a route to the most powerful extreme ultraviolet pulses. Reliably generating isolated attosecond pulses requires gating to only a single dominant optical cycle, but techniques developed for lower power lasers have not been readily transferable. We present a novel method to temporally gate attosecond pulse trains by combining noncollinear and polarization gating. This scheme uses a split beam configuration which allows pulse gating to be implemented at the high beam fluence typical of multi-TW to PW class laser systems. Scalings for the gate width demonstrate that isolated attosecond pulses are possible even for modest pulse durations achievable for existing and planned future ultrashort high-power laser systems. Experimental results demonstrating the spectral effects of temporal gating on harmonic spectra generated by a relativistic laser plasma interaction are shown.

9.
Phys Rev Lett ; 115(6): 064801, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26296119

ABSTRACT

Ultraintense laser pulses with a few-cycle rising edge are ideally suited to accelerating ions from ultrathin foils, and achieving such pulses in practice represents a formidable challenge. We show that such pulses can be obtained using sufficiently strong and well-controlled relativistic nonlinearities in spatially well-defined near-critical-density plasmas. The resulting ultraintense pulses with an extremely steep rising edge give rise to significantly enhanced carbon ion energies consistent with a transition to radiation pressure acceleration.

10.
Rev Sci Instrum ; 86(3): 033303, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25832219

ABSTRACT

We present a detailed study of the use of a non-parallel, inhomogeneous magnetic field spectrometer for the investigation of laser-accelerated ion beams. Employing a wedged yoke design, we demonstrate the feasibility of an in-situ self-calibration technique of the non-uniform magnetic field and show that high-precision measurements of ion energies are possible in a wide-angle configuration. We also discuss the implications of a stacked detector system for unambiguous identification of different ion species present in the ion beam and explore the feasibility of detection of high energy particles beyond 100 MeV/amu in radiation harsh environments.

11.
Article in English | MEDLINE | ID: mdl-25871224

ABSTRACT

Fast-electron generation and dynamics, including electron refluxing, is at the core of understanding high-intensity laser-plasma interactions. This field is itself of strong relevance to fast ignition fusion and the development of new short-pulse, intense, x-ray, γ-ray, and particle sources. In this paper, we describe experiments that explicitly link fast-electron refluxing and anisotropy in hard-x-ray emission. We find the anisotropy in x-ray emission to be strongly correlated to the suppression of refluxing. In contrast to some previous work, the peak of emission is directly along the rear normal to the target rather than along either the incident laser direction or the specular reflection direction.

12.
Phys Rev Lett ; 113(23): 235002, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25526132

ABSTRACT

Double-foil targets separated by a low density plasma and irradiated by a petawatt-class laser are shown to be a copious source of coherent broadband radiation. Simulations show that a dense sheet of relativistic electrons is formed during the interaction of the laser with the tenuous plasma between the two foils. The coherent motion of the electron sheet as it transits the second foil results in strong broadband emission in the extreme ultraviolet, consistent with our experimental observations.

13.
Rev Sci Instrum ; 85(10): 103105, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25362369

ABSTRACT

An improved dual-gas quasi-phase matching (QPM) foil target for high harmonic generation (HHG) is presented. The target can be setup with 12 individual gas inlets each feeding multiple nozzles separated by a minimum distance of 10 µm. Three-dimensional gas density profiles of these jets were measured using a Mach-Zehnder Interferometer. These measurements reveal how the jets influence the density of gas in adjacent jets and how this leads to increased local gas densities. The analysis shows that the gas profiles of the jets are well defined up to a distance of about 300 µm from the orifice. This target design offers experimental flexibility, not only for HHG/QPM investigations, but also for a wide range of experiments due to the large number of possible jet configurations. We demonstrate the application to controlled phase tuning in the extreme ultraviolet using a 1 kHz-10 mJ-30 fs-laser system where interference between two jets in the spectral range from 17 to 30 nm was observed.

14.
Phys Rev Lett ; 112(12): 123902, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24724650

ABSTRACT

The polarization dependence of laser-driven coherent synchrotron emission transmitted through thin foils is investigated experimentally. The harmonic generation process is seen to be almost completely suppressed for circular polarization opening up the possibility of producing isolated attosecond pulses via polarization gating. Particle-in-cell simulations suggest that current laser pulses are capable of generating isolated attosecond pulses with high pulse energies.

15.
Phys Rev Lett ; 110(25): 255002, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23829742

ABSTRACT

The generation of ultrarelativistic positron beams with short duration (τ(e+) ≃ 30 fs), small divergence (θ(e+) ≃ 3 mrad), and high density (n(e+) ≃ 10(14)-10(15) cm(-3)) from a fully optical setup is reported. The detected positron beam propagates with a high-density electron beam and γ rays of similar spectral shape and peak energy, thus closely resembling the structure of an astrophysical leptonic jet. It is envisaged that this experimental evidence, besides the intrinsic relevance to laser-driven particle acceleration, may open the pathway for the small-scale study of astrophysical leptonic jets in the laboratory.

16.
Phys Rev Lett ; 110(16): 165002, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23679609

ABSTRACT

Beam divergences of high-order extreme ultraviolet harmonics from intense laser interactions with steep plasma density gradients are studied through experiment and Fourier analysis of the harmonic spatial phase. We show that while emission due to the relativistically oscillating mirror mechanism can be explained by ponderomotive surface denting, in agreement with previous results, the divergence of the emission due to the coherent wake emission mechanism requires a combination of the dent phase and an intrinsic emission phase. The temporal dependence of the divergences for both mechanisms is highlighted while it is also shown that the coherent wake emission divergence can be small in circumstances where the phase terms compensate each other.

17.
Phys Rev Lett ; 110(17): 175001, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23679738

ABSTRACT

High-order harmonics and attosecond pulses of light can be generated when ultraintense, ultrashort laser pulses reflect off a solid-density plasma with a sharp vacuum interface, i.e., a plasma mirror. We demonstrate experimentally the key influence of the steepness of the plasma-vacuum interface on the interaction, by measuring the spectral and spatial properties of harmonics generated on a plasma mirror whose initial density gradient scale length L is continuously varied. Time-resolved interferometry is used to separately measure this scale length.

18.
Nat Commun ; 4: 1763, 2013.
Article in English | MEDLINE | ID: mdl-23612304

ABSTRACT

Reflecting light from a mirror moving close to the speed of light has been envisioned as a route towards producing bright X-ray pulses since Einstein's seminal work on special relativity. For an ideal relativistic mirror, the peak power of the reflected radiation can substantially exceed that of the incident radiation due to the increase in photon energy and accompanying temporal compression. Here we demonstrate for the first time that dense relativistic electron mirrors can be created from the interaction of a high-intensity laser pulse with a freestanding, nanometre-scale thin foil. The mirror structures are shown to shift the frequency of a counter-propagating laser pulse coherently from the infrared to the extreme ultraviolet with an efficiency >10(4) times higher than in the case of incoherent scattering. Our results elucidate the reflection process of laser-generated electron mirrors and give clear guidance for future developments of a relativistic mirror structure.

19.
Opt Lett ; 37(17): 3672-4, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22940986

ABSTRACT

Attosecond science is enabled by the ability to convert femtosecond near-infrared laser light into coherent harmonics in the extreme ultraviolet spectral range. While attosecond sources have been utilized in experiments that have not demanded high intensities, substantially higher photon flux would provide a natural link to the next significant experimental breakthrough. Numerical simulations of dual-gas high harmonic generation indicate that the output in the cutoff spectral region can be selectively enhanced without disturbing the single-atom gating mechanism. Here, we summarize the results of these simulations and present first experimental findings to support these predictions.

20.
Phys Rev Lett ; 109(12): 125002, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-23005951

ABSTRACT

Harmonic generation in the limit of ultrasteep density gradients is studied experimentally. Observations reveal that, while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale lengths (L(p)/λ < 1), the absolute efficiency of the harmonics declines for the steepest plasma density scale length L(p)→0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the relativistic oscillating mirror was estimated to be in the range of 10(-4)-10(-6) of the laser pulse energy for photon energies ranging from 20-40 eV, with the best results being obtained for an intermediate density scale length.

SELECTION OF CITATIONS
SEARCH DETAIL
...