Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Plant Commun ; 3(5): 100330, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35617961

ABSTRACT

Vanilla planifolia, the species cultivated to produce one of the world's most popular flavors, is highly prone to partial genome endoreplication, which leads to highly unbalanced DNA content in cells. We report here the first molecular evidence of partial endoreplication at the chromosome scale by the assembly and annotation of an accurate haplotype-phased genome of V. planifolia. Cytogenetic data demonstrated that the diploid genome size is 4.09 Gb, with 16 chromosome pairs, although aneuploid cells are frequently observed. Using PacBio HiFi and optical mapping, we assembled and phased a diploid genome of 3.4 Gb with a scaffold N50 of 1.2 Mb and 59 128 predicted protein-coding genes. The atypical k-mer frequencies and the uneven sequencing depth observed agreed with our expectation of unbalanced genome representation. Sixty-seven percent of the genes were scattered over only 30% of the genome, putatively linking gene-rich regions and the endoreplication phenomenon. By contrast, low-coverage regions (non-endoreplicated) were rich in repeated elements but also contained 33% of the annotated genes. Furthermore, this assembly showed distinct haplotype-specific sequencing depth variation patterns, suggesting complex molecular regulation of endoreplication along the chromosomes. This high-quality, anchored assembly represents 83% of the estimated V. planifolia genome. It provides a significant step toward the elucidation of this complex genome. To support post-genomics efforts, we developed the Vanilla Genome Hub, a user-friendly integrated web portal that enables centralized access to high-throughput genomic and other omics data and interoperable use of bioinformatics tools.


Subject(s)
Vanilla , Chromosomes , Endoreduplication , Genome Size , Haplotypes , Vanilla/genetics
2.
Hortic Res ; 8(1): 206, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34593779

ABSTRACT

Sclareol, an antifungal specialized metabolite produced by clary sage, Salvia sclarea, is the starting plant natural molecule used for the hemisynthesis of the perfume ingredient ambroxide. Sclareol is mainly produced in clary sage flower calyces; however, the cellular localization of the sclareol biosynthesis remains unknown. To elucidate the site of sclareol biosynthesis, we analyzed its spatial distribution in the clary sage calyx epidermis using laser desorption/ionization mass spectrometry imaging (LDI-FTICR-MSI) and investigated the expression profile of sclareol biosynthesis genes in isolated glandular trichomes (GTs). We showed that sclareol specifically accumulates in GTs' gland cells in which sclareol biosynthesis genes are strongly expressed. We next isolated a glabrous beardless mutant and demonstrate that more than 90% of the sclareol is produced by the large capitate GTs. Feeding experiments, using 1-13C-glucose, and specific enzyme inhibitors further revealed that the methylerythritol-phosphate (MEP) biosynthetic pathway is the main source of isopentenyl diphosphate (IPP) precursor used for the biosynthesis of sclareol. Our findings demonstrate that sclareol is an MEP-derived diterpene produced by large capitate GTs in clary sage emphasing the role of GTs as biofactories dedicated to the production of specialized metabolites.

3.
PLoS One ; 16(7): e0248954, 2021.
Article in English | MEDLINE | ID: mdl-34288908

ABSTRACT

A road-map of the genetic and phenotypic diversities in both crops and their wild related species can help identifying valuable genetic resources for further crop breeding. The clary sage (Salvia sclarea L.), a perfume, medicinal and aromatic plant, is used for sclareol production and ornamental purposes. Despite its wide use in the field of cosmetics, the phenotypic and genetic diversity of wild and cultivated clary sages remains to be explored. We characterized the genetic and phenotypic variation of a collection of six wild S. sclarea populations from Croatia, sampled along an altitudinal gradient, and, of populations of three S. sclarea cultivars. We showed low level of genetic diversity for the two S. sclarea traditional cultivars used for essential oil production and for ornamental purposes, respectively. In contrast, a recent cultivar resulting from new breeding methods, which involve hybridizations among several genotypes rather than traditional recurrent selection and self-crosses over time, showed high genetic diversity. We also observed a marked phenotypic differentiation for the ornamental clary sage compared with other cultivated and wild clary sages. Instead, the two cultivars used for essential oil production, a traditional and a recent one, respectively, were not phenotypically differentiated from the wild Croatian populations. Our results also featured some wild populations with high sclareol content and early-flowering phenotypes as good candidates for future breeding programs. This study opens up perspectives for basic research aiming at understanding the impact of breeding methods on clary sage evolution, and highlights interesting avenues for clary breeding programs.


Subject(s)
Biological Variation, Population , Genetic Variation , Perfume , Plant Breeding , Salvia/genetics , Oils, Volatile
4.
J Biol Chem ; 295(41): 14025-14039, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32788216

ABSTRACT

Prions result from a drastic conformational change of the host-encoded cellular prion protein (PrP), leading to the formation of ß-sheet-rich, insoluble, and protease-resistant self-replicating assemblies (PrPSc). The cellular and molecular mechanisms involved in spontaneous prion formation in sporadic and inherited human prion diseases or equivalent animal diseases are poorly understood, in part because cell models of spontaneously forming prions are currently lacking. Here, extending studies on the role of the H2 α-helix C terminus of PrP, we found that deletion of the highly conserved 190HTVTTTT196 segment of ovine PrP led to spontaneous prion formation in the RK13 rabbit kidney cell model. On long-term passage, the mutant cells stably produced proteinase K (PK)-resistant, insoluble, and aggregated assemblies that were infectious for naïve cells expressing either the mutant protein or other PrPs with slightly different deletions in the same area. The electrophoretic pattern of the PK-resistant core of the spontaneous prion (ΔSpont) contained mainly C-terminal polypeptides akin to C1, the cell-surface anchored C-terminal moiety of PrP generated by natural cellular processing. RK13 cells expressing solely the Δ190-196 C1 PrP construct, in the absence of the full-length protein, were susceptible to ΔSpont prions. ΔSpont infection induced the conversion of the mutated C1 into a PK-resistant and infectious form perpetuating the biochemical characteristics of ΔSpont prion. In conclusion, this work provides a unique cell-derived system generating spontaneous prions and provides evidence that the 113 C-terminal residues of PrP are sufficient for a self-propagating prion entity.


Subject(s)
Amino Acid Sequence , PrPSc Proteins , Prion Diseases , Protein Aggregation, Pathological , Sequence Deletion , Animals , Cell Line , Humans , PrPSc Proteins/chemistry , PrPSc Proteins/genetics , PrPSc Proteins/metabolism , Prion Diseases/genetics , Prion Diseases/metabolism , Prion Diseases/pathology , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Protein Conformation, alpha-Helical , Protein Domains , Rabbits , Sheep , Solubility
5.
Trends Plant Sci ; 25(5): 477-487, 2020 05.
Article in English | MEDLINE | ID: mdl-31983619

ABSTRACT

Plant glandular trichomes are epidermal secretory structures producing various specialized metabolites. These metabolites are involved in plant adaptation to its environment and many of them have remarkable properties exploited by fragrance, flavor, and pharmaceutical industries. The identification of genes controlling glandular trichome development is of high interest to understand how plants produce specialized metabolites. Our knowledge about this developmental process is still limited, but genes controlling glandular trichome initiation and morphogenesis have recently been identified. In particular, R2R3-MYB and HD-ZIP IV transcription factors appear to play essential roles in glandular trichome initiation in Artemisia annua and tomato. In this review, we focus on the results obtained in these two species and we propose genetic regulation models integrating these data.


Subject(s)
Artemisia annua , Solanum lycopersicum , Artemisia annua/metabolism , Gene Expression Regulation, Plant/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Trichomes/genetics
6.
Mol Neurobiol ; 56(3): 2159-2173, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29998397

ABSTRACT

Among the ever-growing number of self-replicating proteins involved in neurodegenerative diseases, the prion protein PrP remains the most infamous for its central role in transmissible spongiform encephalopathies (TSEs). In these diseases, pathogenic prions propagate through a seeding mechanism, where normal PrPC molecules are converted into abnormally folded scrapie isoforms termed PrPSc. Since its discovery over 30 years ago, much advance has contributed to define the host-encoded cellular prion protein PrPC as a critical relay of prion-induced neuronal cell demise. A current consensual view is that the conversion of PrPC into PrPSc in neuronal cells diverts the former from its normal function with subsequent molecular alterations affecting synaptic plasticity. Here, we report that prion infection is associated with reduced expression of key effectors of the Notch pathway in vitro and in vivo, recapitulating changes fostered by the absence of PrPC. We further show that both prion infection and PrPC depletion promote drastic alterations in the expression of a defined set of Eph receptors and their ephrin ligands, which represent important players in synaptic function. Our data indicate that defects in the Notch and Eph axes can be mitigated in response to histone deacetylase inhibition in PrPC-depleted as well as prion-infected cells. We thus conclude that infectious prions cause a loss-of-function phenotype with respect to Notch and Eph signaling and that these alterations are sustained by epigenetic mechanisms.


Subject(s)
Prion Diseases/metabolism , Prion Proteins/metabolism , Receptors, Eph Family/metabolism , Receptors, Notch/metabolism , Signal Transduction/physiology , Animals , Epigenesis, Genetic , Mice , Neurons/metabolism , Prion Diseases/genetics
7.
Genome Biol Evol ; 9(4): 1051-1071, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28419219

ABSTRACT

DNA remodeling during endoreplication appears to be a strong developmental characteristic in orchids. In this study, we analyzed DNA content and nuclei in 41 species of orchids to further map the genome evolution in this plant family. We demonstrate that the DNA remodeling observed in 36 out of 41 orchids studied corresponds to strict partial endoreplication. Such process is developmentally regulated in each wild species studied. Cytometry data analyses allowed us to propose a model where nuclear states 2C, 4E, 8E, etc. form a series comprising a fixed proportion, the euploid genome 2C, plus 2-32 additional copies of a complementary part of the genome. The fixed proportion ranged from 89% of the genome in Vanilla mexicana down to 19% in V. pompona, the lowest value for all 148 orchids reported. Insterspecific hybridization did not suppress this phenomenon. Interestingly, this process was not observed in mass-produced epiphytes. Nucleolar volumes grow with the number of endocopies present, coherent with high transcription activity in endoreplicated nuclei. Our analyses suggest species-specific chromatin rearrangement. Towards understanding endoreplication, V. planifolia constitutes a tractable system for isolating the genomic sequences that confer an advantage via endoreplication from those that apparently suffice at diploid level.

8.
Prion ; 11(1): 25-30, 2017 01 02.
Article in English | MEDLINE | ID: mdl-28281924

ABSTRACT

Mapping out regions of PrP influencing prion conversion remains a challenging issue complicated by the lack of prion structure. The portion of PrP associated with infectivity contains the α-helical domain of the correctly folded protein and turns into a ß-sheet-rich insoluble core in prions. Deletions performed so far inside this segment essentially prevented the conversion. Recently we found that deletion of the last C-terminal residues of the helix H2 was fully compatible with prion conversion in the RK13-ovPrP cell culture model, using 3 different infecting strains. This was in agreement with preservation of the overall PrPC structure even after removal of up to one-third of this helix. Prions with internal deletion were infectious for cells and mice expressing the wild-type PrP and they retained prion strain-specific characteristics. We thus identified a piece of the prion domain that is neither necessary for the conformational transition of PrPC nor for the formation of a stable prion structure.


Subject(s)
Prions/chemistry , Amino Acid Sequence , Animals , Cell Line , Mice , Models, Molecular , Prions/pathogenicity , Protein Conformation , Virulence
9.
Sci Rep ; 6: 29116, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27384922

ABSTRACT

Prions are formed of misfolded assemblies (PrP(Sc)) of the variably N-glycosylated cellular prion protein (PrP(C)). In infected species, prions replicate by seeding the conversion and polymerization of host PrP(C). Distinct prion strains can be recognized, exhibiting defined PrP(Sc) biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrP(Sc) assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrP(C) glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrP(C) species of interest as substrate. Applying the technique to PrP(C) glycosylation mutants expressing cells revealed that neither PrP(C) nor PrP(Sc) glycoform stoichiometry was instrumental to PrP(Sc) formation and strainness perpetuation. Our study supports the view that strain properties, including PrP(Sc) glycotype are enciphered within PrP(Sc) structural backbone, not in the attached glycans.


Subject(s)
Biochemistry/methods , Prions/metabolism , Protein Folding , Animals , Brain/metabolism , Cell Extracts , Cell Line , Cells, Cultured , Electrophoresis , Gene Knockout Techniques , Glycosylation , Humans , Mice, Transgenic , Microspheres , Miniaturization , Mutant Proteins/metabolism , Time Factors
10.
J Virol ; 90(15): 6963-6975, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27226369

ABSTRACT

UNLABELLED: Mammalian prions are PrP proteins with altered structures causing transmissible fatal neurodegenerative diseases. They are self-perpetuating through formation of beta-sheet-rich assemblies that seed conformational change of cellular PrP. Pathological PrP usually forms an insoluble protease-resistant core exhibiting beta-sheet structures but no more alpha-helical content, loosing the three alpha-helices contained in the correctly folded PrP. The lack of a high-resolution prion structure makes it difficult to understand the dynamics of conversion and to identify elements of the protein involved in this process. To determine whether completeness of residues within the protease-resistant domain is required for prions, we performed serial deletions in the helix H2 C terminus of ovine PrP, since this region has previously shown some tolerance to sequence changes without preventing prion replication. Deletions of either four or five residues essentially preserved the overall PrP structure and mutant PrP expressed in RK13 cells were efficiently converted into bona fide prions upon challenge by three different prion strains. Remarkably, deletions in PrP facilitated the replication of two strains that otherwise do not replicate in this cellular context. Prions with internal deletion were self-propagating and de novo infectious for naive homologous and wild-type PrP-expressing cells. Moreover, they caused transmissible spongiform encephalopathies in mice, with similar biochemical signatures and neuropathologies other than the original strains. Prion convertibility and transfer of strain-specific information are thus preserved despite shortening of an alpha-helix in PrP and removal of residues within prions. These findings provide new insights into sequence/structure/infectivity relationship for prions. IMPORTANCE: Prions are misfolded PrP proteins that convert the normal protein into a replicate of their own abnormal form. They are responsible for invariably fatal neurodegenerative disorders. Other aggregation-prone proteins appear to have a prion-like mode of expansion in brains, such as in Alzheimer's or Parkinson's diseases. To date, the resolution of prion structure remains elusive. Thus, to genetically define the landscape of regions critical for prion conversion, we tested the effect of short deletions. We found that, surprisingly, removal of a portion of PrP, the C terminus of alpha-helix H2, did not hamper prion formation but generated infectious agents with an internal deletion that showed characteristics essentially similar to those of original infecting strains. Thus, we demonstrate that completeness of the residues inside prions is not necessary for maintaining infectivity and the main strain-specific information, while reporting one of the few if not the only bona fide prions with an internal deletion.


Subject(s)
Epithelial Cells/metabolism , PrPC Proteins/genetics , PrPC Proteins/metabolism , Scrapie/metabolism , Sequence Deletion , Amino Acid Sequence , Animals , Mice , Mice, Transgenic , PrPC Proteins/chemistry , Protein Conformation , Sequence Homology, Amino Acid , Sheep , Structure-Activity Relationship
11.
Acta Neuropathol Commun ; 4: 10, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26847207

ABSTRACT

INTRODUCTION: Mammalian prions are proteinaceous pathogens responsible for a broad range of fatal neurodegenerative diseases in humans and animals. These diseases can occur spontaneously, such as Creutzfeldt-Jakob disease (CJD) in humans, or be acquired or inherited. Prions are primarily formed of macromolecular assemblies of the disease-associated prion protein PrP(Sc), a misfolded isoform of the host-encoded prion protein PrP(C). Within defined host-species, prions can exist as conformational variants or strains. Based on both the M/V polymorphism at codon 129 of PrP and the electrophoretic signature of PrP(Sc) in the brain, sporadic CJD is classified in different subtypes, which may encode different strains. A transmission barrier, the mechanism of which remains unknown, limits prion cross-species propagation. To adapt to the new host, prions have the capacity to 'mutate' conformationally, leading to the emergence of a variant with new biological properties. Here, we transmitted experimentally one rare subtype of human CJD, designated cortical MM2 (129 MM with type 2 PrP(Sc)), to transgenic mice overexpressing either human or the VRQ allele of ovine PrP(C). RESULTS: In marked contrast with the reported absence of transmission to knock-in mice expressing physiological levels of human PrP, this subtype transmitted faithfully to mice overexpressing human PrP, and exhibited unique strain features. Onto the ovine PrP sequence, the cortical MM2 subtype abruptly evolved on second passage, thereby allowing emergence of a pair of strain variants with distinct PrP(Sc) biochemical characteristics and differing tropism for the central and lymphoid tissues. These two strain components exhibited remarkably distinct replicative properties in cell-free amplification assay, allowing the 'physical' cloning of the minor, lymphotropic component, and subsequent isolation in ovine PrP mice and RK13 cells. CONCLUSIONS: Here, we provide in-depth assessment of the transmissibility and evolution of one rare subtype of sporadic CJD upon homologous and heterologous transmission. The notion that the environment or matrix where replication is occurring is key to the selection and preferential amplification of prion substrain components raises new questions on the determinants of prion replication within and between species. These data also further interrogate on the interplay between animal and human prions.


Subject(s)
Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Creutzfeldt-Jakob Syndrome , Polymorphism, Genetic/genetics , Prions/genetics , Animals , Cell Line, Transformed , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/pathology , Creutzfeldt-Jakob Syndrome/transmission , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Prions/classification , Protein Folding , Sheep , Spleen/metabolism , Spleen/pathology , Swine , Transfection
12.
Prion ; 7(2): 131-5, 2013.
Article in English | MEDLINE | ID: mdl-23232499

ABSTRACT

Upon prion infection, abnormal prion protein (PrP (Sc) ) self-perpetuate by conformational conversion of α-helix-rich PrP (C) into ß sheet enriched form, leading to formation and deposition of PrP (Sc) aggregates in affected brains. However the process remains poorly understood at the molecular level and the regions of PrP critical for conversion are still debated. Minimal amino acid substitutions can impair prion replication at many places in PrP. Conversely, we recently showed that bona fide prions could be generated after introduction of eight and up to 16 additional amino acids in the H2-H3 inter-helix loop of PrP. Prion replication also accommodated the insertions of an octapeptide at different places in the last turns of H2. This reverse genetic approach reveals an unexpected tolerance of prions to substantial sequence changes in the protease-resistant part which is associated with infectivity. It also demonstrates that conversion does not require the presence of a specific sequence in the middle of the H2-H3 area. We discuss the implications of our findings according to different structural models proposed for PrP (Sc) and questioned the postulated existence of an N- or C-terminal prion domain in the protease-resistant region.


Subject(s)
Amino Acid Substitution , Mutation , Prions/genetics , Prions/metabolism , Amino Acid Sequence , Animals , Humans , Mammals , Molecular Sequence Data , Prion Diseases/metabolism , Prions/chemistry , Protein Conformation , Protein Engineering , Structure-Activity Relationship
13.
J Biol Chem ; 287(23): 18953-64, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22511770

ABSTRACT

The process of prion conversion is not yet well understood at the molecular level. The regions critical for the conformational change of PrP remain mostly debated and the extent of sequence change acceptable for prion conversion is poorly documented. To achieve progress on these issues, we applied a reverse genetic approach using the Rov cell system. This allowed us to test the susceptibility of a number of insertion mutants to conversion into prion in the absence of wild-type PrP molecules. We were able to propagate several prions with 8 to 16 extra amino acids, including a polyglycine stretch and His or FLAG tags, inserted in the middle of the protease-resistant fragment. These results demonstrate the possibility to increase the length of the loop between helices H2 and H3 up to 4-fold, without preventing prion replication. They also indicate that this loop probably remains unstructured in PrP(Sc). We also showed that bona fide prions can be produced following insertion of octapeptides in the two C-terminal turns of H2. These insertions do not interfere with the overall fold of the H2-H3 domain indicating that the highly conserved sequence of the terminal part of H2 is not critical for the conversion. Altogether these data showed that the amplitude of modifications acceptable for prion conversion in the core of the globular domain of PrP is much greater than one might have assumed. These observations should help to refine structural models of PrP(Sc) and elucidate the conformational changes underlying prions generation.


Subject(s)
Prions/chemistry , Prions/metabolism , Prions/pathogenicity , Animals , Cell Line , Humans , Mice , Mice, Transgenic , Mutagenesis, Insertional , Prions/genetics , Protein Structure, Secondary , Protein Structure, Tertiary
14.
Plant Mol Biol ; 78(4-5): 323-36, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22170036

ABSTRACT

The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16-18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.


Subject(s)
Bryopsida/growth & development , Plant Proteins/metabolism , Plant Shoots/growth & development , RNA-Binding Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Molecular Sequence Data , Mutation , Phenotype , Phylogeny , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Shoots/metabolism , Poaceae/genetics , RNA-Binding Proteins/genetics
15.
Am J Bot ; 98(6): 986-97, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21613071

ABSTRACT

PREMISE OF THE STUDY: Abnormal mitotic behavior with somatic aneuploidy and partial endoreplication were previously reported for the first time in the plant kingdom in Vanilla planifolia. Because vanilla plants are vegetatively propagated, such abnormalities have been transmitted. This study aimed to determine whether mitotic abnormalities also occur in Vanilla hybrid or are suppressed by sexual reproduction. METHODS: Twenty-eight accessions of Vanilla ×tahitensis, one V. planifolia, and hybrid V. planifolia × V. ×tahitensis were analyzed by chromosome counts, cytometry, and fluorescent in situ hybridization of 18S-5.8S-26S rDNA. KEY RESULTS: In a single root meristem of V. ×tahitensis, chromosome number varied from 22 to 31 in diploids (mean 2C = 5.23 pg), 31 to 41 in triploids (2C = 7.82 pg) and 43 to 60 in tetraploids (2C = 10.27 pg). Morphological diversity is apparently related to ploidy changes. Aneuploidy and partial (asymmetrical) endoreduplication were observed in root meristems of both V. ×tahitensis and the hybrid V. planifolia × V. ×tahitensis, but pollen grains had the euploid chromosome number (n = 15 in diploids). CONCLUSIONS: Genome irregularities may be transmitted not only during vegetative propagation but also by sexual reproduction in Vanilla. However, there must be a complex regulation of genome size and organization between the aneuploidy in somatic tissues and subsequently euploid gametic tissue. This is a novel example of polysomaty with developmentally regulated partial endoreplication.


Subject(s)
Crosses, Genetic , Cytogenetic Analysis/methods , Genetic Variation , Genome Size/genetics , Genome, Plant/genetics , Vanilla/genetics , Base Composition/genetics , Cell Nucleus/genetics , Chromosomes, Plant/genetics , DNA, Plant/genetics , DNA, Ribosomal/genetics , Haploidy , Heterochromatin/genetics , In Situ Hybridization, Fluorescence , Metaphase/genetics , Pollen/physiology , Polynesia , Tissue Survival
16.
J Virol ; 85(7): 3077-85, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21248032

ABSTRACT

Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection.


Subject(s)
Mutation, Missense , Prions/metabolism , Protein Processing, Post-Translational , Animals , Cell Line , Cell Membrane/chemistry , Glycosylation , Golgi Apparatus/chemistry , Prions/genetics , Protein Transport , Rabbits , Sheep
17.
J Biol Chem ; 285(14): 10252-64, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20154089

ABSTRACT

The abnormally folded form of the prion protein (PrP(Sc)) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrP(Sc) N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrP(Sc) accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrP(Sc) proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrP(Sc) fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrP(Sc) and cell pathogenesis of prion infection.


Subject(s)
Brain/metabolism , PrPSc Proteins/metabolism , Prion Diseases/metabolism , Prion Diseases/transmission , Spleen/metabolism , Animals , Brain/pathology , Calpain/antagonists & inhibitors , Calpain/metabolism , Cathepsin B/antagonists & inhibitors , Cathepsin B/metabolism , Cathepsin L/antagonists & inhibitors , Cathepsin L/metabolism , Cells, Cultured , Endopeptidase K/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Sheep , Spleen/pathology
18.
Planta ; 231(3): 525-35, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19943172

ABSTRACT

TERMINAL EAR1-like (TEL) genes encode putative RNA-binding proteins only found in land plants. Previous studies suggested that they may regulate tissue and organ initiation in Poaceae. Two TEL genes were identified in both Populus trichocarpa and the hybrid aspen Populus tremula x P. alba, named, respectively, PoptrTEL1-2 and PtaTEL1-2. The analysis of the organisation around the PoptrTEL genes in the P. trichocarpa genome and the estimation of the synonymous substitution rate for PtaTEL1-2 genes indicate that the paralogous link between these two Populus TEL genes probably results from the Salicoid large-scale gene-duplication event. Phylogenetic analyses confirmed their orthology link with the other TEL genes. The expression pattern of both PtaTEL genes appeared to be restricted to the mother cells of the plant body: leaf founder cells, leaf primordia, axillary buds and root differentiating tissues, as well as to mother cells of vascular tissues. Most interestingly, PtaTEL1-2 transcripts were found in differentiating cells of secondary xylem and phloem, but probably not in the cambium itself. Taken together, these results indicate specific expression of the TEL genes in differentiating cells controlling tissue and organ development in Populus (and other Angiosperm species).


Subject(s)
Plant Proteins/genetics , Populus/genetics , Amino Acid Sequence , Cell Differentiation , Evolution, Molecular , Gene Duplication , Genome, Plant , In Situ Hybridization , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Populus/growth & development , Populus/metabolism , RNA, Messenger/metabolism , Sequence Alignment , Sequence Analysis, Protein , Transcription, Genetic
19.
J Gen Virol ; 90(Pt 8): 2050-2060, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19339478

ABSTRACT

Dysfunction of the endoplasmic reticulum associated protein degradation/proteasome system is believed to contribute to the initiation or aggravation of neurodegenerative disorders associated with protein misfolding, and there is some evidence to suggest that proteasome dysfunctions might be implicated in prion disease. This study investigated the effect of proteasome inhibitors on the biogenesis of both the cellular (PrP(C)) and abnormal (PrP(Sc)) forms of prion protein in CAD neuronal cells, a newly introduced prion cell system. In uninfected cells, proteasome impairment altered the intracellular distribution of PrP(C), leading to a strong accumulation in the Golgi apparatus. Moreover, a detergent-insoluble and weakly protease-resistant PrP species of 26 kDa, termed PrP(26K), accumulated in the cells, whether they were prion-infected or not. However, no evidence was found that, in infected cells, this PrP(26K) species converts into the highly proteinase K-resistant PrP(Sc). In the infected cultures, proteasome inhibition caused an increased intracellular aggregation of PrP(Sc) that was deposited into large aggresomes. These findings strengthen the view that, in neuronal cells expressing wild-type PrP(C) from the natural promoter, proteasomal impairment may affect both the process of PrP(C) biosynthesis and the subcellular sites of PrP(Sc) accumulation, despite the fact that these two effects could essentially be disconnected.


Subject(s)
Cytosol/chemistry , Prions/metabolism , Proteasome Inhibitors , Animals , Cells, Cultured , Golgi Apparatus/chemistry , Mice , Neurons/chemistry , Neurons/drug effects , Protein Denaturation
20.
Theor Appl Genet ; 116(3): 407-15, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18060540

ABSTRACT

Anthracnose, caused by the hemibiotrophic fungal pathogen Colletotrichum lindemuthianum is a devastating disease of common bean. Resistant cultivars are economical means for defense against this pathogen. In the present study, we mapped resistance specificities against 7 C. lindemuthianum strains of various geographical origins revealing differential reactions on BAT93 and JaloEEP558, two parents of a recombinant inbred lines (RILs) population, of Meso-american and Andean origin, respectively. Six strains revealed the segregation of two independent resistance genes. A specific numerical code calculating the LOD score in the case of two independent segregating genes (i.e. genes with duplicate effects) in a RILs population was developed in order to provide a recombination value (r) between each of the two resistance genes and the tested marker. We mapped two closely linked Andean resistance genes (Co-x, Co-w) at the end of linkage group (LG) B1 and mapped one Meso-american resistance genes (Co-u) at the end of LG B2. We also confirmed the complexity of the previously identified B4 resistance gene cluster, because four of the seven tested strains revealed a resistance specificity near Co-y from JaloEEP558 and two strains identified a resistance specificity near Co-9 from BAT93. Resistance genes found within the same cluster confer resistance to different strains of a single pathogen such as the two anthracnose specificities Co-x and Co-w clustered at the end of LG B1. Clustering of resistance specificities to multiple pathogens such as fungi (Co-u) and viruses (I) was also observed at the end of LG B2.


Subject(s)
Colletotrichum/physiology , Genes, Plant , Immunity, Innate/genetics , Phaseolus/genetics , Phaseolus/microbiology , Plant Diseases/immunology , Plant Diseases/microbiology , Chromosome Mapping , Genotype , Immunity, Innate/immunology , Inbreeding , Likelihood Functions , Lod Score , Phenotype , Plant Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...