Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Science ; 354(6319): 1563-1566, 2016 12 23.
Article in English | MEDLINE | ID: mdl-27856846

ABSTRACT

Carbon dioxide (CO2) is one of the most abundant species in cometary nuclei, but because of its high volatility, CO2 ice is generally only found beneath the surface. We report the infrared spectroscopic identification of a CO2 ice-rich surface area located in the Anhur region of comet 67P/Churyumov-Gerasimenko. Spectral modeling shows that about 0.1% of the 80- by 60-meter area is CO2 ice. This exposed ice was observed a short time after the comet exited local winter; following the increased illumination, the CO2 ice completely disappeared over about 3 weeks. We estimate the mass of the sublimated CO2 ice and the depth of the eroded surface layer. We interpret the presence of CO2 ice as the result of the extreme seasonal changes induced by the rotation and orbit of the comet.

2.
Nature ; 529(7586): 368-72, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26760209

ABSTRACT

Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation.


Subject(s)
Extraterrestrial Environment/chemistry , Ice/analysis , Meteoroids , Diffusion , Gases/analysis , Gases/chemistry , Spectrum Analysis
3.
Science ; 347(6220): aaa0628, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25613895

ABSTRACT

The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ(-1)), and the broad absorption feature in the 2.9-to-3.6-micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun.

4.
Science ; 334(6055): 492-4, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-22034430

ABSTRACT

The Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS) on Rosetta obtained hyperspectral images, spectral reflectance maps, and temperature maps of the asteroid 21 Lutetia. No absorption features, of either silicates or hydrated minerals, have been detected across the observed area in the spectral range from 0.4 to 3.5 micrometers. The surface temperature reaches a maximum value of 245 kelvin and correlates well with topographic features. The thermal inertia is in the range from 20 to 30 joules meter(-2) kelvin(-1) second(-0.5), comparable to a lunarlike powdery regolith. Spectral signatures of surface alteration, resulting from space weathering, seem to be missing. Lutetia is likely a remnant of the primordial planetesimal population, unaltered by differentiation processes and composed of chondritic materials of enstatitic or carbonaceous origin, dominated by iron-poor minerals that have not suffered aqueous alteration.

5.
Science ; 332(6029): 577-80, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21474710

ABSTRACT

Initial images of Venus's south pole by the Venus Express mission have shown the presence of a bright, highly variable vortex, similar to that at the planet's north pole. Using high-resolution infrared measurements of polar winds from the Venus Express Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument, we show the vortex to have a constantly varying internal structure, with a center of rotation displaced from the geographic south pole by ~3 degrees of latitude and that drifts around the pole with a period of 5 to 10 Earth days. This is indicative of a nonsymmetric and varying precession of the polar atmospheric circulation with respect to the planetary axis.

6.
Proc Natl Acad Sci U S A ; 106(4): 985-8, 2009 Jan 27.
Article in English | MEDLINE | ID: mdl-19164595

ABSTRACT

The v' = 0 progressions of the C --> X and A --> X band systems of nitric oxide dominate the middle-UV spectrum of the night-time upper atmospheres of the Earth, Mars, and Venus. The C(0) --> A(0)+h nu radiative transition at 1.224 mum, the only channel effectively populating the A(0) level, must therefore occur also. There have been, however, no reported detections of the C(0) --> A(0) band in the atmospheres of these or any other planets. We analyzed all available near-infrared limb observations of the dark-side atmosphere of Venus by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument on the Venus Express spacecraft and found 2 unambiguous detections of this band at equatorial latitudes that seem to be associated with episodic events of highly enhanced nightglow emission. The discovery of the C(0) --> A(0) band means observations in the 1.2-1.3 microm region, which also contains the a(0) --> X(0) emission band of molecular oxygen, can provide a wealth of information on the high-altitude chemistry and dynamics of the Venusian atmosphere.

7.
Nature ; 450(7170): 641-5, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18046396

ABSTRACT

The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90-120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 microm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at approximately 115 km and varies with solar zenith angle over a range of approximately 10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km +/- 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted.

8.
Nature ; 450(7170): 637-40, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18046395

ABSTRACT

Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright 'dipole' feature surrounded by a cold 'collar' at its north pole. The polar dipole is a 'double-eye' feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus' south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.

9.
Nature ; 448(7149): 54-6, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17611536

ABSTRACT

Hyperion, Saturn's eighth largest icy satellite, is a body of irregular shape in a state of chaotic rotation. The surface is segregated into two distinct units. A spatially dominant high-albedo unit having the strong signature of H2O ice contrasts with a unit that is about a factor of four lower in albedo and is found mostly in the bottoms of cup-like craters. Here we report observations of Hyperion's surface in the ultraviolet and near-infrared spectral regions with two optical remote sensing instruments on the Cassini spacecraft at closest approach during a fly-by on 25-26 September 2005. The close fly-by afforded us the opportunity to obtain separate reflectance spectra of the high- and low-albedo surface components. The low-albedo material has spectral similarities and compositional signatures that link it with the surface of Phoebe and a hemisphere-wide superficial coating on Iapetus.

10.
Science ; 313(5793): 1620-2, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-16973876

ABSTRACT

Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal the presence of a vast tropospheric cloud on Titan at latitudes 51 degrees to 68 degrees north and all longitudes observed (10 degrees to 190 degrees west). The derived characteristics indicate that this cloud is composed of ethane and forms as a result of stratospheric subsidence and the particularly cool conditions near the moon's north pole. Preferential condensation of ethane, perhaps as ice, at Titan's poles during the winters may partially explain the lack of liquid ethane oceans on Titan's surface at middle and lower latitudes.


Subject(s)
Ethane , Saturn , Atmosphere , Cold Temperature , Extraterrestrial Environment , Gases , Ice , Methane , Photochemistry , Spacecraft
11.
Science ; 311(5766): 1425-8, 2006 Mar 10.
Article in English | MEDLINE | ID: mdl-16527972

ABSTRACT

Observations of Saturn's satellite Enceladus using Cassini's Visual and Infrared Mapping Spectrometer instrument were obtained during three flybys of Enceladus in 2005. Enceladus' surface is composed mostly of nearly pure water ice except near its south pole, where there are light organics, CO2, and amorphous and crystalline water ice, particularly in the region dubbed the "tiger stripes." An upper limit of 5 precipitable nanometers is derived for CO in the atmospheric column above Enceladus, and 2% for NH3 in global surface deposits. Upper limits of 140 kelvin (for a filled pixel) are derived for the temperatures in the tiger stripes.


Subject(s)
Extraterrestrial Environment/chemistry , Ice/analysis , Saturn , Ammonia/analysis , Atmosphere , Carbon Dioxide/analysis , Ice Cover , Spectrophotometry, Infrared
12.
Nature ; 438(7068): 623-7, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16319882

ABSTRACT

The recent identification of large deposits of sulphates by remote sensing and in situ observations has been considered evidence of the past presence of liquid water on Mars. Here we report the unambiguous detection of diverse phyllosilicates, a family of aqueous alteration products, on the basis of observations by the OMEGA imaging spectrometer on board the Mars Express spacecraft. These minerals are mainly associated with Noachian outcrops, which is consistent with an early active hydrological system, sustaining the long-term contact of igneous minerals with liquid water. We infer that the two main families of hydrated alteration products detected-phyllosilicates and sulphates--result from different formation processes. These occurred during two distinct climatic episodes: an early Noachian Mars, resulting in the formation of hydrated silicates, followed by a more acidic environment, in which sulphates formed.


Subject(s)
Aluminum Silicates/analysis , Aluminum Silicates/chemistry , Climate , Extraterrestrial Environment/chemistry , Mars , Clay , Hydrogen-Ion Concentration , Iron/analysis , Magnesium/analysis , Space Flight , Spacecraft , Sulfates/analysis , Sulfates/chemistry , Water/analysis , Water/chemistry
13.
Science ; 310(5747): 474-7, 2005 Oct 21.
Article in English | MEDLINE | ID: mdl-16239472

ABSTRACT

Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal that the horizontal structure, height, and optical depth of Titan's clouds are highly dynamic. Vigorous cloud centers are seen to rise from the middle to the upper troposphere within 30 minutes and dissipate within the next hour. Their development indicates that Titan's clouds evolve convectively; dissipate through rain; and, over the next several hours, waft downwind to achieve their great longitude extents. These and other characteristics suggest that temperate clouds originate from circulation-induced convergence, in addition to a forcing at the surface associated with Saturn's tides, geology, and/or surface composition.


Subject(s)
Methane , Saturn , Atmosphere , Extraterrestrial Environment , Spacecraft , Spectrum Analysis
14.
Nature ; 435(7043): 786-9, 2005 Jun 09.
Article in English | MEDLINE | ID: mdl-15944697

ABSTRACT

Titan is the only satellite in our Solar System with a dense atmosphere. The surface pressure is 1.5 bar (ref. 1) and, similar to the Earth, N2 is the main component of the atmosphere. Methane is the second most important component, but it is photodissociated on a timescale of 10(7) years (ref. 3). This short timescale has led to the suggestion that Titan may possess a surface or subsurface reservoir of hydrocarbons to replenish the atmosphere. Here we report near-infrared images of Titan obtained on 26 October 2004 by the Cassini spacecraft. The images show that a widespread methane ocean does not exist; subtle albedo variations instead suggest topographical variations, as would be expected for a more solid (perhaps icy) surface. We also find a circular structure approximately 30 km in diameter that does not resemble any features seen on other icy satellites. We propose that the structure is a dome formed by upwelling icy plumes that release methane into Titan's atmosphere.


Subject(s)
Extraterrestrial Environment/chemistry , Gases/analysis , Ice/analysis , Infrared Rays , Moon , Photography , Saturn , Atmosphere/chemistry , Gases/chemistry , Geography , Hydrocarbons/analysis , Hydrocarbons/chemistry , Methane/analysis , Methane/chemistry , Spacecraft
15.
Science ; 307(5715): 1576-81, 2005 Mar 11.
Article in English | MEDLINE | ID: mdl-15718430

ABSTRACT

The Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) investigation, on board the European Space Agency Mars Express mission, is mapping the surface composition of Mars at a 0.3- to 5-kilometer resolution by means of visible-near-infrared hyperspectral reflectance imagery. The data acquired during the first 9 months of the mission already reveal a diverse and complex surface mineralogy, offering key insights into the evolution of Mars. OMEGA has identified and mapped mafic iron-bearing silicates of both the northern and southern crust, localized concentrations of hydrated phyllosilicates and sulfates but no carbonates, and ices and frosts with a water-ice composition of the north polar perennial cap, as for the south cap, covered by a thin carbon dioxide-ice veneer.


Subject(s)
Ice , Mars , Minerals , Silicates , Carbon Dioxide , Dry Ice , Evolution, Planetary , Extraterrestrial Environment , Ferric Compounds , Geologic Sediments , Iron Compounds , Magnesium Compounds , Spacecraft , Water
16.
J Mol Spectrosc ; 203(2): 285-309, 2000 Oct.
Article in English | MEDLINE | ID: mdl-10986141

ABSTRACT

Line positions and intensities belonging to the vibrational system 2nu(2)/nu(4) of ammonia (14)NH(3) are measured and analyzed between 1200 and 2200 cm(-1) in order to improve the molecular database. For this, laboratory spectra are obtained at 0.006 and 0.011 cm(-1) unapodized resolution and with 4% precisions for the intensities using Fourier transform spectrometers located at the Kitt Peak National Observatory and the Jet Propulsion Laboratory. The observed data contain transitions of the nu(4) fundamental band near 1626.276(1) and 1627.375(2) cm(-1) (for s and a inversion upper states, respectively) and the 2nu(2) overtone band near 1597.470(3) and 1882.179(5) cm(-1) (for s and a inversion states, respectively). A total of 2345 lines with J'

17.
Nature ; 405(6783): 158-60, 2000 May 11.
Article in English | MEDLINE | ID: mdl-10821265

ABSTRACT

Models of Jupiter's formation and structure predict that its atmosphere is enriched in oxygen, relative to the Sun, and that consequently water clouds should be present globally near the 5-bar pressure level. Past attempts to confirm these predictions have led to contradictory results; in particular, the Galileo probe revealed a very dry atmosphere at the entry site, with no significant clouds at depths exceeding the 2-bar level. Although the entry site was known to be relatively cloud-free, the contrast between the observed local dryness and the expected global wetness was surprising. Here we analyse near-infrared (around 5 microm) observations of Jupiter, a spectral region that can reveal the water vapour abundance and vertical cloud structure in the troposphere. We find that humid and extremely dry regions exist in close proximity, and that some humid regions are spatially correlated with bright convective clouds extending from the deep water clouds to the visible atmosphere.


Subject(s)
Extraterrestrial Environment , Jupiter , Atmosphere , Humidity , Spectrophotometry, Infrared , Water
18.
Planet Space Sci ; 47(10-11): 1243-62, 1999.
Article in English | MEDLINE | ID: mdl-11543193

ABSTRACT

We present our current understanding of the composition, vertical mixing, cloud structure and the origin of the atmospheres of Jupiter and Saturn. Available observations point to a much more vigorous vertical mixing in Saturn's middle-upper atmosphere than in Jupiter's. The nearly cloud-free nature of the Galileo probe entry site, a 5-micron hotspot, is consistent with the depletion of condensable volatiles to great depths, which is attributed to local meteorology. Somewhat similar depletion of water may be present in the 5-micron bright regions of Saturn also. The supersolar abundances of heavy elements, particularly C and S in Jupiter's atmosphere and C in Saturn's, as well as the progressive increase of C from Jupiter to Saturn and beyond, tend to support the icy planetesimal model of the formation of the giant planets and their atmospheres. However, much work remains to be done, especially in the area of laboratory studies, including identification of possible new microwave absorbers, and modelling, in order to resolve the controversy surrounding the large discrepancy between Jupiter's global ammonia abundance, hence the nitrogen elemental ratio, derived from the earth-based microwave observations and that inferred from the analysis of the Galileo probe-orbiter radio attenuation data for the hotspot. We look forward to the observations from Cassini-Huygens spacecraft which are expected to result not only in a rich harvest of information for Saturn, but a better understanding of the formation of the giant planets and their atmospheres when these data are combined with those that exist for Jupiter.


Subject(s)
Atmosphere/chemistry , Evolution, Planetary , Jupiter , Models, Chemical , Saturn , Ammonia/analysis , Ammonia/chemistry , Astronomy/instrumentation , Atmosphere/analysis , Elements , Hydrogen Sulfide/analysis , Hydrogen Sulfide/chemistry , Mass Spectrometry/instrumentation , Microwaves , Photochemistry , Spacecraft/instrumentation , Water
19.
Science ; 276(5309): 104-8, 1997 Apr 04.
Article in English | MEDLINE | ID: mdl-9082978

ABSTRACT

Observations with the High Resolution Imager on the Rontgensatellit reveal x-ray emissions from Jupiter's equatorial latitudes. The observed emissions probably result from the precipitation of energetic (>300 kiloelectron volts per atomic mass unit) sulfur and oxygen ions out of Jupiter's inner radiation belt. Model calculations of the energy deposition by such heavy ion precipitation and of the resulting atmospheric heating rates indicate that this energy source can contribute to the high exospheric temperatures(>800 kelvin at 0.01 microbar) measured by the Galileo probe's Atmospheric Structure Instrument. Low-latitude energetic particle precipitation must therefore be considered, in addition to other proposed mechanisms such as gravity waves and soft electron precipitation, as an important source of heat for Jupiter's thermosphere.

20.
Science ; 274(5286): 385-8, 1996 Oct 18.
Article in English | MEDLINE | ID: mdl-8832878

ABSTRACT

The Near Infrared Mapping Spectrometer performed spectral studies of Jupiter and the Galilean satellites during the June 1996 perijove pass of the Galileo spacecraft. Spectra for a 5-micrometer hot spot on Jupiter are consistent with the absence of a significant water cloud above 8 bars and with a depletion of water compared to that predicted for solar composition, corroborating results from the Galileo probe. Great Red Spot (GRS) spectral images show that parts of this feature extend upward to 240 millibars, although considerable altitude-dependent structure is found within it. A ring of dense clouds surrounds the GRS and is lower than it by 3 to 7 kilometers. Spectra of Callisto and Ganymede reveal a feature at 4. 25 micrometers, attributed to the presence of hydrated minerals or possibly carbon dioxide on their surfaces. Spectra of Europa's high latitudes imply that fine-grained water frost overlies larger grains. Several active volcanic regions were found on Io, with temperatures of 420 to 620 kelvin and projected areas of 5 to 70 square kilometers.


Subject(s)
Jupiter , Ammonia/analysis , Carbon Dioxide/analysis , Extraterrestrial Environment , Hydroxides/analysis , Methane/analysis , Phosphines/analysis , Spectroscopy, Near-Infrared , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...