Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Skelet Muscle ; 10(1): 23, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32767978

ABSTRACT

BACKGROUND: Canine models of Duchenne muscular dystrophy (DMD) are a valuable tool to evaluate potential therapies because they faithfully reproduce the human disease. Several cases of dystrophinopathies have been described in canines, but the Golden Retriever muscular dystrophy (GRMD) model remains the most used in preclinical studies. Here, we report a new spontaneous dystrophinopathy in a Labrador Retriever strain, named Labrador Retriever muscular dystrophy (LRMD). METHODS: A colony of LRMD dogs was established from spontaneous cases. Fourteen LRMD dogs were followed-up and compared to the GRMD standard using several functional tests. The disease causing mutation was studied by several molecular techniques and identified using RNA-sequencing. RESULTS: The main clinical features of the GRMD disease were found in LRMD dogs; the functional tests provided data roughly overlapping with those measured in GRMD dogs, with similar inter-individual heterogeneity. The LRMD causal mutation was shown to be a 2.2-Mb inversion disrupting the DMD gene within intron 20 and involving the TMEM47 gene. In skeletal muscle, the Dp71 isoform was ectopically expressed, probably as a consequence of the mutation. We found no evidence of polymorphism in either of the two described modifier genes LTBP4 and Jagged1. No differences were found in Pitpna mRNA expression levels that would explain the inter-individual variability. CONCLUSIONS: This study provides a full comparative description of a new spontaneous canine model of dystrophinopathy, found to be phenotypically equivalent to the GRMD model. We report a novel large DNA mutation within the DMD gene and provide evidence that LRMD is a relevant model to pinpoint additional DMD modifier genes.


Subject(s)
Disease Models, Animal , Dystrophin/genetics , Muscular Dystrophy, Duchenne/genetics , Phenotype , Animals , Dogs , Genes, Modifier , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Mutation
2.
PLoS One ; 10(3): e0119334, 2015.
Article in English | MEDLINE | ID: mdl-25837977

ABSTRACT

While human mesenchymal stem cells (hMSCs), either in the bone marrow or in tumour microenvironment could be targeted by radiotherapy, their response is poorly understood. The oxic effects on radiosensitivity, cell cycle progression are largely unknown, and the radiation effects on hMSCs differentiation capacities remained unexplored. Here we analysed hMSCs viability and cell cycle progression in 21% O2 and 3% O2 conditions after medical X-rays irradiation. Differentiation towards osteogenesis and chondrogenesis after irradiation was evaluated through an analysis of differentiation specific genes. Finally, a 3D culture model in hypoxia was used to evaluate chondrogenesis in conditions mimicking the natural hMSCs microenvironment. The hMSCs radiosensitivity was not affected by O2 tension. A decreased number of cells in S phase and an increase in G2/M were observed in both O2 tensions after 16 hours but hMSCs released from the G2/M arrest and proliferated at day 7. Osteogenesis was increased after irradiation with an enhancement of mRNA expression of specific osteogenic genes (alkaline phosphatase, osteopontin). Osteoblastic differentiation was altered since matrix deposition was impaired with a decreased expression of collagen I, probably through an increase of its degradation by MMP-3. After induction in monolayers, chondrogenesis was altered after irradiation with an increase in COL1A1 and a decrease in both SOX9 and ACAN mRNA expression. After induction in a 3D culture in hypoxia, chondrogenesis was altered after irradiation with a decrease in COL2A1, ACAN and SOX9 mRNA amounts associated with a RUNX2 increase. Together with collagens I and II proteins decrease, associated to a MMP-13 expression increase, these data show a radiation-induced impairment of chondrogenesis. Finally, a radiation-induced impairment of both osteogenesis and chondrogenesis was characterised by a matrix composition alteration, through inhibition of synthesis and/or increased degradation. Alteration of osteogenesis and chondrogenesis in hMSCs could potentially explain bone/joints defects observed after radiotherapy.


Subject(s)
Cell Differentiation/radiation effects , Chondrogenesis , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/radiation effects , Osteogenesis , Adolescent , Adult , Cell Cycle/radiation effects , Cell Line , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Cellular Senescence/radiation effects , Collagen/genetics , Collagen/metabolism , G2 Phase Cell Cycle Checkpoints/radiation effects , Gene Expression , Humans , Male , Mesenchymal Stem Cells/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoblasts/radiation effects , Oxygen Consumption , X-Rays , Young Adult
3.
Tissue Eng Part C Methods ; 21(2): 133-47, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24957638

ABSTRACT

Osteoarthritis (OA) is an irreversible pathology that causes a decrease in articular cartilage thickness, leading finally to the complete degradation of the affected joint. The low spontaneous repair capacity of cartilage prevents any restoration of the joint surface, making OA a major public health issue. Here, we developed an innovative combination of treatment conditions to improve the human chondrocyte phenotype before autologous chondrocyte implantation. First, we seeded human dedifferentiated chondrocytes into a collagen sponge as a scaffold, cultured them in hypoxia in the presence of a bone morphogenetic protein (BMP), BMP-2, and transfected them with small interfering RNAs targeting two markers overexpressed in OA dedifferentiated chondrocytes, that is, type I collagen and/or HtrA1 serine protease. This strategy significantly decreased mRNA and protein expression of type I collagen and HtrA1, and led to an improvement in the chondrocyte phenotype index of differentiation. The effectiveness of our in vitro culture process was also demonstrated in the nude mouse model in vivo after subcutaneous implantation. We, thus, provide here a new protocol able to favor human hyaline chondrocyte phenotype in primarily dedifferentiated cells, both in vitro and in vivo. Our study also offers an innovative strategy for chondrocyte redifferentiation and opens new opportunities for developing therapeutic targets.


Subject(s)
Bone Morphogenetic Protein 2/pharmacology , Cartilage, Articular/cytology , Collagen Type I/metabolism , Extracellular Matrix/metabolism , Hyalin/metabolism , RNA, Small Interfering/metabolism , Serine Endopeptidases/metabolism , Aged , Aged, 80 and over , Animals , Cattle , Cell Hypoxia/drug effects , Cells, Cultured , Chondrocytes , Chondrogenesis/drug effects , Collagen Type I, alpha 1 Chain , Extracellular Matrix/drug effects , High-Temperature Requirement A Serine Peptidase 1 , Humans , Hypertrophy , Kinetics , Mice, Nude , Middle Aged , Osteogenesis/drug effects , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
PLoS One ; 7(11): e48478, 2012.
Article in English | MEDLINE | ID: mdl-23185260

ABSTRACT

The GRMD (Golden retriever muscular dystrophy) dog has been widely used in pre-clinical trials targeting DMD (Duchenne muscular dystrophy), using in many cases a concurrent immune-suppressive treatment. The aim of this study is to assess if such a treatment could have an effect on the disease course of these animals. Seven GRMD dogs were treated with an association of cyclosporine A (immunosuppressive dosage) and prednisolone (2 mg/kg/d) during 7 months, from 2 to 9 months of age. A multi-parametric evaluation was performed during this period which allowed us to demonstrate that this treatment had several significant effects on the disease progression. The gait quality as assessed by 3D-accelerometry was dramatically improved. This was consistent with the evolution of other parameters towards a significant improvement, such as the clinical motor score, the post-tetanic relaxation and the serum CK levels. In contrast the isometric force measurement as well as the histological evaluation argued in favor of a more severe disease progression. In view of the disease modifying effects which have been observed in this study it should be concluded that immunosuppressive treatments should be used with caution when carrying out pre-clinical studies in this canine model of DMD. They also highlight the importance of using a large range of multi-parametric evaluation tools to reliably draw any conclusion from trials involving dystrophin-deficient dogs, which reproduce the complexity of the human disease.


Subject(s)
Immunosuppressive Agents/therapeutic use , Muscular Dystrophy, Animal/drug therapy , Muscular Dystrophy, Duchenne/drug therapy , Accelerometry , Animals , Biomechanical Phenomena/drug effects , Creatine Kinase/blood , Cyclosporine/pharmacology , Cyclosporine/therapeutic use , Disease Models, Animal , Dogs , Follow-Up Studies , Gait/drug effects , Humans , Immunosuppressive Agents/pharmacology , Motor Activity/drug effects , Muscular Dystrophy, Animal/blood , Muscular Dystrophy, Animal/complications , Muscular Dystrophy, Animal/physiopathology , Muscular Dystrophy, Duchenne/blood , Muscular Dystrophy, Duchenne/complications , Muscular Dystrophy, Duchenne/physiopathology , Principal Component Analysis , Tetany/blood , Tetany/complications , Tetany/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...