Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Invest Dermatol ; 143(10): 1937-1946.e7, 2023 10.
Article in English | MEDLINE | ID: mdl-37037414

ABSTRACT

Merkel cell carcinoma (MCC) is an aggressive skin cancer for which Merkel cell polyomavirus integration and expression of viral oncogenes small T and Large T have been identified as major oncogenic determinants. Recently, a component of the PRC2 complex, the histone methyltransferase enhancer of zeste homolog 2 (EZH2) that induces H3K27 trimethylation as a repressive mark has been proposed as a potential therapeutic target in MCC. Because divergent results have been reported for the levels of EZH2 and trimethylation of lysine 27 on histone 3, we analyzed these factors in a large MCC cohort to identify the molecular determinants of EZH2 activity in MCC and to establish MCC cell lines' sensitivity to EZH2 inhibitors. Immunohistochemical expression of EZH2 was observed in 92% of MCC tumors (156 of 170), with higher expression levels in virus-positive than virus-negative tumors (P = 0.026). For the latter, we showed overexpression of EZHIP, a negative regulator of the PRC2 complex. In vitro, ectopic expression of the large T antigen in fibroblasts led to the induction of EZH2 expression, whereas the knockdown of T antigens in MCC cell lines resulted in decreased EZH2 expression. EZH2 inhibition led to selective cytotoxicity on virus-positive MCC cell lines. This study highlights the distinct mechanisms of EZH2 induction between virus-negative and -positive MCC.


Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Skin Neoplasms , Humans , Carcinoma, Merkel Cell/pathology , Histones/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Skin Neoplasms/pathology , Merkel cell polyomavirus/genetics , Antigens, Viral, Tumor/genetics , Antigens, Viral, Tumor/metabolism
3.
J Virol ; 95(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33298540

ABSTRACT

Interferon-induced transmembrane protein 3 (IFITM3) is a cellular factor that reduces HIV-1 infectivity by an incompletely understood mechanism. We show here that viruses differing only in the envelope glycoprotein (Env) expressed on their surface have different sensitivities to IFITM3. Measurements of the sensitivity of viruses to neutralizing antibodies showed that IFITM3 increased the sensitivity of IFITM3-sensitive viruses to PG16, which targets the V1V2 loop, suggesting that IFITM3 promotes exposure of the PG16 epitope of IFITM3-sensitive viruses. Exchanges of V1V2 loops between the Env proteins of sensitive and resistant viruses revealed that V1V2 and V3 act together to modulate viral sensitivity to IFITM3. Co-immunoprecipitation experiments showed that IFITM3 interacted with both the precursor (gp160) and cleaved (gp120) forms of Env from IFITM3-sensitive viruses, but only with the precursor (gp160) form of Env from IFITM3-resistant viruses. This finding suggests that the interaction between the Env of resistant viruses and IFITM3 was inhibited once Env had been processed in the Golgi apparatus. This hypothesis was supported by immunofluorescence experiments, which showed a strong colocalization of IFITM3 with the Env of sensitive viruses, but only weak colocalization with the Env of resistant viruses on the plasma membrane of virus-producing cells. Together, these results indicate that IFITM3 interacts with Env, inducing conformational changes that may decrease viral infectivity. This antiviral action is, nevertheless, modulated by the nature of the Env, in particular its V1V2 and V3 loops, which after maturation may be able to escape this interaction.IMPORTANCE Interferon-induced transmembrane protein 3 (IFITM3) is a cellular factor that reduces HIV-1 infectivity by an incompletely understood mechanism. This study aimed to elucidate the role of the HIV-1 envelope glycoprotein (Env) in determining viral susceptibility to IFITM3. We found that viruses differing only in Env expressed on their surface had different sensitivities to IFITM3. By comparing the Env proteins of viruses that were highly sensitive or resistant to IFITM3, we obtained new insight in the mechanisms by which HIV-1 escapes this protein. We showed that IFITM3 interacts with the Env protein of sensitive viruses in virion-producing cells, inducing conformational changes that may decrease viral infectivity. However, this antiviral action is modulated by the nature of Env, particularly the V1V2 and V3 loops, which may be able to escape this interaction after processing in the Golgi.

4.
Sci Rep ; 10(1): 16744, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33028961

ABSTRACT

The diversity of the HIV-1 envelope glycoproteins (Env) is largely a consequence of the pressure exerted by the adaptive immune response to infection. While it was generally assumed that the neutralizing antibody (NAb) response depended mainly on the infected individual, the concept that virus-related factors could be important in inducing this response has recently emerged. Here, we analyzed the influence of the infecting viral strain in shaping NAb responses in four HIV-1 infected subjects belonging to a transmission chain. We also explored the impact of NAb responses on the functional evolution of the viral quasispecies. The four patients developed a strong autologous neutralizing antibody response that drove viral escape and coincided with a parallel evolution of their infecting quasispecies towards increasing infectious properties, increasing susceptibility to T20 and increasing resistance to both CD4 analogs and V3 loop-directed NAbs. This evolution was associated with identical Env sequence changes at several positions in the V3 loop, the fusion peptide and the HR2 domain of gp41. The common evolutionary pattern of Env in different hosts suggests that the capacity of a given Env to adapt to changing environments may be restricted by functional constraints that limit its evolutionary landscape.


Subject(s)
Evolution, Molecular , HIV Infections/virology , HIV-1/metabolism , Viral Envelope Proteins/metabolism , Humans , Male , Monocytes/metabolism , Monocytes/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...