Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(28): e2402624121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38954543

ABSTRACT

The pial vasculature is the sole source of blood supply to the neocortex. The brain is contained within the skull, a vascularized bone marrow with a unique anatomical connection to the brain meninges. Recent developments in tissue clearing have enabled detailed mapping of the entire pial and calvarial vasculature. However, what are the absolute flow rate values of those vascular networks? This information cannot accurately be retrieved with the commonly used bioimaging methods. Here, we introduce Pia-FLOW, a unique approach based on large-scale transcranial fluorescence localization microscopy, to attain hemodynamic imaging of the whole murine pial and calvarial vasculature at frame rates up to 1,000 Hz and spatial resolution reaching 5.4 µm. Using Pia-FLOW, we provide detailed maps of flow velocity, direction, and vascular diameters which can serve as ground-truth data for further studies, advancing our understanding of brain fluid dynamics. Furthermore, Pia-FLOW revealed that the pial vascular network functions as one unit for robust allocation of blood after stroke.


Subject(s)
Connectome , Hemodynamics , Pia Mater , Animals , Mice , Hemodynamics/physiology , Pia Mater/blood supply , Cerebrovascular Circulation/physiology , Brain/blood supply , Brain/diagnostic imaging , Skull/diagnostic imaging , Skull/blood supply , Stroke/physiopathology , Stroke/diagnostic imaging , Male , Mice, Inbred C57BL
2.
Nat Commun ; 15(1): 3526, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664419

ABSTRACT

Large-scale imaging of brain activity with high spatio-temporal resolution is crucial for advancing our understanding of brain function. The existing neuroimaging techniques are largely limited by restricted field of view, slow imaging speed, or otherwise do not have the adequate spatial resolution to capture brain activities on a capillary and cellular level. To address these limitations, we introduce fluorescence localization microscopy aided with sparsely-labeled red blood cells for cortex-wide morphological and functional cerebral angiography with 4.9 µm spatial resolution and 1 s temporal resolution. When combined with fluorescence calcium imaging, the proposed method enables extended recordings of stimulus-evoked neuro-vascular changes in the murine brain while providing simultaneous multiparametric readings of intracellular neuronal activity, blood flow velocity/direction/volume, and vessel diameter. Owing to its simplicity and versatility, the proposed approach will become an invaluable tool for deciphering the regulation of cortical microcirculation and neurovascular coupling in health and disease.


Subject(s)
Erythrocytes , Microscopy, Fluorescence , Animals , Erythrocytes/metabolism , Erythrocytes/cytology , Microscopy, Fluorescence/methods , Mice , Cerebral Cortex/blood supply , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Male , Mice, Inbred C57BL , Cerebral Angiography/methods , Calcium/metabolism , Cerebrovascular Circulation/physiology , Fluorescent Dyes/chemistry , Neurovascular Coupling/physiology , Neurons/metabolism , Neurons/physiology , Microcirculation
3.
Nat Commun ; 14(1): 5889, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735158

ABSTRACT

The intricate and delicate anatomy of the brain poses significant challenges for the treatment of cerebrovascular and neurodegenerative diseases. Thus, precise local drug delivery in hard-to-reach brain regions remains an urgent medical need. Microrobots offer potential solutions; however, their functionality in the brain remains restricted by limited imaging capabilities and complications within blood vessels, such as high blood flows, osmotic pressures, and cellular responses. Here, we introduce ultrasound-activated microrobots for in vivo navigation in brain vasculature. Our microrobots consist of lipid-shelled microbubbles that autonomously aggregate and propel under ultrasound irradiation. We investigate their capacities in vitro within microfluidic-based vasculatures and in vivo within vessels of a living mouse brain. These microrobots self-assemble and execute upstream motion in brain vasculature, achieving velocities up to 1.5 µm/s and moving against blood flows of ~10 mm/s. This work represents a substantial advance towards the therapeutic application of microrobots within the complex brain vasculature.


Subject(s)
Brain , Drug Delivery Systems , Animals , Mice , Ultrasonography , Brain/diagnostic imaging , Microbubbles , Microfluidics
4.
Nat Commun ; 14(1): 3584, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328490

ABSTRACT

Super-resolution optoacoustic imaging of microvascular structures deep in mammalian tissues has so far been impeded by strong absorption from densely-packed red blood cells. Here we devised 5 µm biocompatible dichloromethane-based microdroplets exhibiting several orders of magnitude higher optical absorption than red blood cells at near-infrared wavelengths, thus enabling single-particle detection in vivo. We demonstrate non-invasive three-dimensional microangiography of the mouse brain beyond the acoustic diffraction limit (<20 µm resolution). Blood flow velocity quantification in microvascular networks and light fluence mapping was also accomplished. In mice affected by acute ischemic stroke, the multi-parametric multi-scale observations enabled by super-resolution and spectroscopic optoacoustic imaging revealed significant differences in microvascular density, flow and oxygen saturation in ipsi- and contra-lateral brain hemispheres. Given the sensitivity of optoacoustics to functional, metabolic and molecular events in living tissues, the new approach paves the way for non-invasive microscopic observations with unrivaled resolution, contrast and speed.


Subject(s)
Ischemic Stroke , Photoacoustic Techniques , Mice , Animals , Photoacoustic Techniques/methods , Angiography , Microvessels , Acoustics , Mammals
5.
Nat Commun ; 13(1): 7969, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36577750

ABSTRACT

Wide-field fluorescence imaging is an indispensable tool for studying large-scale biodynamics. Limited space-bandwidth product and strong light diffusion make conventional implementations incapable of high-resolution mapping of fluorescence biodistribution in three dimensions. We introduce a volumetric wide-field fluorescence microscopy based on optical astigmatism combined with fluorescence source localization, covering 5.6×5.6×0.6 mm3 imaging volume. Two alternative configurations are proposed exploiting multifocal illumination or sparse localization of point emitters, which are herein seamlessly integrated in one system. We demonstrate real-time volumetric mapping of the murine cortical microcirculation at capillary resolution without employing cranial windows, thus simultaneously delivering quantitative perfusion information across both brain hemispheres. Morphological and functional changes of cerebral vascular networks are further investigated after an acute ischemic stroke, enabling cortex-wide observation of concurrent collateral recruitment events occurring on a sub-second scale. The reported technique thus offers a wealth of unmatched possibilities for non- or minimally invasive imaging of biodynamics across scales.


Subject(s)
Ischemic Stroke , Mice , Animals , Microcirculation , Tissue Distribution , Skull , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL