Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 5075, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34417471

ABSTRACT

The discovery of superconducting H3S with a critical temperature Tc∼200 K opened a door to room temperature superconductivity and stimulated further extensive studies of hydrogen-rich compounds stabilized by high pressure. Here, we report a comprehensive study of the yttrium-hydrogen system with the highest predicted Tcs among binary compounds and discuss the contradictions between different theoretical calculations and experimental data. We synthesized yttrium hydrides with the compositions of YH3, YH4, YH6 and YH9 in a diamond anvil cell and studied their crystal structures, electrical and magnetic transport properties, and isotopic effects. We found superconductivity in the Im-3m YH6 and P63/mmc YH9 phases with maximal Tcs of ∼220 K at 183 GPa and ∼243 K at 201 GPa, respectively. Fm-3m YH10 with the highest predicted Tc > 300 K was not observed in our experiments, and instead, YH9 was found to be the hydrogen-richest yttrium hydride in the studied pressure and temperature range up to record 410 GPa and 2250 K.

2.
Nat Commun ; 10(1): 2522, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31175310

ABSTRACT

The discovery of superconductivity at 260 K in hydrogen-rich compounds like LaH10 re-invigorated the quest for room temperature superconductivity. Here, we report the temperature dependence of the upper critical fields µ0Hc2(T) of superconducting H3S under a record-high combination of applied pressures up to 160 GPa and fields up to 65 T. We find that Hc2(T) displays a linear dependence on temperature over an extended range as found in multigap or in strongly-coupled superconductors, thus deviating from conventional Werthamer, Helfand, and Hohenberg (WHH) formalism. The best fit of Hc2(T) to the WHH formalism yields negligible values for the Maki parameter α and the spin-orbit scattering constant λSO. However, Hc2(T) is well-described by a model based on strong coupling superconductivity with a coupling constant λ ~ 2. We conclude that H3S behaves as a strong-coupled orbital-limited superconductor over the entire range of temperatures and fields used for our measurements.

3.
Science ; 351(6279): 1303-6, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26989248

ABSTRACT

High-temperature superconductivity remains a focus of experimental and theoretical research. Hydrogen sulfide (H2S) has been reported to be superconducting at high pressures and with a high transition temperature. We report on the direct observation of the expulsion of the magnetic field in H2S compressed to 153 gigapascals. A thin (119)Sn film placed inside the H2S sample was used as a sensor of the magnetic field. The magnetic field on the (119)Sn sensor was monitored by nuclear resonance scattering of synchrotron radiation. Our results demonstrate that an external static magnetic field of about 0.7 tesla is expelled from the volume of (119)Sn foil as a result of the shielding by the H2S sample at temperatures between 4.7 K and approximately 140 K, revealing a superconducting state of H2S.

4.
Nat Phys ; 12(9): 835-838, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28553364

ABSTRACT

A superconducting critical temperature above 200 K has recently been discovered in H2S (or D2S) under high hydrostatic pressure1, 2. These measurements were interpreted in terms of a decomposition of these materials into elemental sulfur and a hydrogen-rich hydride that is responsible for the superconductivity, although direct experimental evidence for this mechanism has so far been lacking. Here we report the crystal structure of the superconducting phase of hydrogen sulfide (and deuterium sulfide) in the normal and superconducting states obtained by means of synchrotron X-ray diffraction measurements, combined with electrical resistance measurements at both room and low temperatures. We find that the superconducting phase is mostly in good agreement with theoretically predicted body-centered cubic (bcc) structure for H3S (Ref.3). The presence of elemental sulfur is also manifest in the X-ray diffraction patterns, thus proving the decomposition mechanism of H2S to H3S + S under pressure4-6.

SELECTION OF CITATIONS
SEARCH DETAIL
...