Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Drug Metab Dispos ; 52(4): 274-287, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38307852

ABSTRACT

Human microbiomes, particularly in the gut, could have a major impact on the efficacy and toxicity of drugs. However, gut microbial metabolism is often neglected in the drug discovery and development process. Medicen, a Paris-based human health innovation cluster, has gathered more than 30 international leading experts from pharma, academia, biotech, clinical research organizations, and regulatory science to develop proposals to facilitate the integration of microbiome science into drug discovery and development. Seven subteams were formed to cover the complementary expertise areas of 1) pharma experience and case studies, 2) in silico microbiome-drug interaction, 3) in vitro microbial stability screening, 4) gut fermentation models, 5) animal models, 6) microbiome integration in clinical and regulatory aspects, and 7) microbiome ecosystems and models. Each expert team produced a state-of-the-art report of their respective field highlighting existing microbiome-related tools at every stage of drug discovery and development. The most critical limitations are the growing, but still limited, drug-microbiome interaction data to produce predictive models and the lack of agreed-upon standards despite recent progress. In this paper we will report on and share proposals covering 1) how microbiome tools can support moving a compound from drug discovery to clinical proof-of-concept studies and alert early on potential undesired properties stemming from microbiome-induced drug metabolism and 2) how microbiome data can be generated and integrated in pharmacokinetic models that are predictive of the human situation. Examples of drugs metabolized by the microbiome will be discussed in detail to support recommendations from the working group. SIGNIFICANCE STATEMENT: Gut microbial metabolism is often neglected in the drug discovery and development process despite growing evidence of drugs' efficacy and safety impacted by their interaction with the microbiome. This paper will detail existing microbiome-related tools covering every stage of drug discovery and development, current progress, and limitations, as well as recommendations to integrate them into the drug discovery and development process.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Humans , Drug Discovery , Drug Interactions
2.
Clin Microbiol Infect ; 30(4): 462-468, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38101472

ABSTRACT

BACKGROUND: Faecal microbiota transplantation (FMT) is the standard treatment for patients with multiple recurrent Clostridioides difficile infection (rCDI). Recently, new commercially developed human microbiota-derived medicinal products have been evaluated and Food and Drug Administration-approved with considerable differences in terms of composition, administration, and targeted populations. OBJECTIVES: To review available data on the different microbiota-derived treatments at the stage of advanced clinical evaluation and research in rCDI in comparison with FMT. SOURCES: Phase II or III trials evaluating a microbiota-derived medicinal product to prevent rCDI. CONTENT: Two commercial microbiota-derived medicinal products are approved by the Food and Drug Administration: Rebyota (RBX2660 Ferring Pharmaceuticals, marketed in the United States) and VOWST (SER-109 -Seres Therapeutics, marketed in the United States), whereas VE303 (Vedanta Biosciences Inc) will be studied in phase III trial. RBX2660 and SER-109 are based on the processing of stools from healthy donors, whereas VE303 consists of a defined bacterial consortium originating from human stools and produced from clonal cell banks. All have proven efficacy to prevent rCDI compared with placebo in patients considered at high risk of recurrence. However, the heterogeneity of the inclusion criteria, and the time between each episode and CDI diagnostics makes direct comparison between trials difficult. The differences regarding the risk of recurrence between the treatment and placebo arms were lower than previously described for FMT (FMT: Δ = 50.5%; RBX2660-phase III: Δ = 13.1%; SER-109-phase III: Δ = 28%; high-dose VE303-phase-II: Δ = 31.7%). All treatments presented a good overall safety profile with mainly mild gastrointestinal symptoms. IMPLICATIONS: Stool-derived products and bacterial consortia need to be clearly distinguished in terms of product characterization and their associated risks with specific long-term post-marketing evaluation similar to registries used for FMT. Their place in the therapeutic strategy for patients with rCDI requires further studies to determine the most appropriate patient population and administration route to prevent rCDI.


Subject(s)
Clostridioides difficile , Clostridium Infections , Microbiota , Humans , Treatment Outcome , Fecal Microbiota Transplantation , Clostridium Infections/microbiology , Recurrence
3.
Front Pharmacol ; 14: 1239745, 2023.
Article in English | MEDLINE | ID: mdl-37745060

ABSTRACT

Diverse terms have been used in the literature to refer to the health benefits obtained from the administration of non-viable microorganisms or their cell fragments and metabolites. In an effort to provide continuity to this emerging field, the International Scientific Association of Probiotics and Prebiotics (ISAPP) convened a panel of experts to consider this category of substances and adopted the term postbiotic, which they defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host." This definition does not stipulate any specific health benefit, finished product, target population or regulatory status. In this perspective article, we focused on postbiotics developed for pharmaceutical uses, including medicinal products and medical devices. We address how this field is regulated for products based on inanimate microorganisms, marketing considerations and existing examples of postbiotics products developed as cosmetics for the skin, for vaginal health, and as orally consumed products. We focus on the European Union for regulatory aspects, but also give examples from other geographical areas.

4.
Heliyon ; 9(7): e18196, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37501991

ABSTRACT

Background and objective: Pasteurized Akkermansia muciniphila cells have shown anti-diabetic effects in rodents and human. Although, its primary site of action consists in maintaining the gut barrier function, there are no study exploring if A. muciniphila controls glycemia via a gut to brain axis. Targeting the gut motility represents an alternative pathway to treat hyperglycemia. Here, we tested the impact of pasteurized A. muciniphila on gut motility, gut-brain axis and glucose metabolism. Methods: We used mice fed a 45% high-fat (HFD) treated or not with pasteurized A. muciniphila MucT during 12 weeks. We measured the effects of the treatment on body weight gain, glucose metabolism (insulin, glycemia, glucose tolerance), gut contraction and enteric neurotransmitter release, and hypothalamic nitric oxide (NO) release. Results: We show that pasteurized A. muciniphila exerts positive effects on different metabolic parameters such as body weight, fat mass, insulin, glycemia and glucose tolerance. This could be explained by the ability of pasteurized A. muciniphila supplementation to decrease duodenal contraction and to increase hypothalamic NO release in HFD mice. Conclusion: We demonstrate a novel mode of action of pasteurized A. muciniphila explaining its beneficial impact on the control of glycemia in a preclinical model of type 2 diabetes via gut-brain axis signaling.

5.
Toxins (Basel) ; 14(9)2022 09 07.
Article in English | MEDLINE | ID: mdl-36136564

ABSTRACT

Chronic kidney disease (CKD) is an incurable disease in which renal function gradually declines, resulting in no noticeable symptoms during the early stages and a life-threatening disorder in the latest stage. The changes that accompany renal failure are likely to influence the gut microbiota, or the ecosystem of micro-organisms resident in the intestine. Altered gut microbiota can display metabolic changes and become harmful to the host. To study the gut-kidney axis in vivo, animal models should ideally reproduce the disorders affecting both the host and the gut microbiota. Murine models of CKD, but not dog, manifest slowed gut transit, similarly to patient. Animal models of CKD also reproduce altered intestinal barrier function, as well as the resulting leaky gut syndrome and bacterial translocation. CKD animal models replicate metabolic but not compositional changes in the gut microbiota. Researchers investigating the gut-kidney axis should pay attention to the selection of the animal model (disease induction method, species) and the setting of the experimental design (control group, sterilization method, individually ventilated cages) that have been shown to influence gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Renal Insufficiency, Chronic , Animals , Disease Models, Animal , Dogs , Ecosystem , Kidney/metabolism , Mice , Renal Insufficiency, Chronic/metabolism
6.
Metabolites ; 12(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35448490

ABSTRACT

Overweight, obesity, and their comorbidities are currently considered a major public health concern. Today considerable efforts are still needed to develop efficient strategies able to attenuate the burden of these diseases. Nutritional interventions, some with plant extracts, present promising health benefits. In this study, we evaluated the action of Camu-Camu (Myrciaria dubia), an Amazonian fruit rich in polyphenols and vitamin C, on the prevention of obesity and associated disorders in mice and the abundance of Akkermansia muciniphila in both cecum and feces. Methods: We investigated the dose-response effects of Camu-Camu extract (CCE) in the context of high-fat-diet (HFD)-induced obesity. After 5 weeks of supplementation, we demonstrated that the two doses of CCE differently improved glucose and lipid homeostasis. The lowest CCE dose (62.5 mg/kg) preferentially decreased non-HDL cholesterol and free fatty acids (FFA) and increased the abundance of A. muciniphila without affecting liver metabolism, while only the highest dose of CCE (200 mg/kg) prevented excessive body weight gain, fat mass gain, and hepatic steatosis. Both doses decreased fasting hyperglycemia induced by HFD. In conclusion, the use of plant extracts, and particularly CCE, may represent an additional option in the support of weight management strategies and glucose homeostasis alteration by mechanisms likely independent from the modulation of A. muciniphila abundance.

7.
Gut ; 71(3): 534-543, 2022 03.
Article in English | MEDLINE | ID: mdl-34108237

ABSTRACT

OBJECTIVE: To investigate the abundance and the prevalence of Dysosmobacter welbionis J115T, a novel butyrate-producing bacterium isolated from the human gut both in the general population and in subjects with metabolic syndrome. To study the impact of this bacterium on host metabolism using diet-induced obese and diabetic mice. DESIGN: We analysed the presence and abundance of the bacterium in 11 984 subjects using four human cohorts (ie, Human Microbiome Project, American Gut Project, Flemish Gut Flora Project and Microbes4U). Then, we tested the effects of daily oral gavages with live D. welbionis J115T on metabolism and several hallmarks of obesity, diabetes, inflammation and lipid metabolism in obese/diabetic mice. RESULTS: This newly identified bacterium was detected in 62.7%-69.8% of the healthy population. Strikingly, in obese humans with a metabolic syndrome, the abundance of Dysosmobacter genus correlates negatively with body mass index, fasting glucose and glycated haemoglobin. In mice, supplementation with live D. welbionis J115T, but not with the pasteurised bacteria, partially counteracted diet-induced obesity development, fat mass gain, insulin resistance and white adipose tissue hypertrophy and inflammation. In addition, live D. welbionis J115T administration protected the mice from brown adipose tissue inflammation in association with increased mitochondria number and non-shivering thermogenesis. These effects occurred with minor impact on the mouse intestinal microbiota composition. CONCLUSIONS: These results suggest that D. welbionis J115T directly and beneficially influences host metabolism and is a strong candidate for the development of next-generation beneficial bacteria targeting obesity and associated metabolic diseases.


Subject(s)
Clostridiales/isolation & purification , Metabolic Diseases/microbiology , Metabolic Diseases/prevention & control , Obesity/microbiology , Obesity/prevention & control , Animals , Case-Control Studies , Cohort Studies , Humans , Insulin Resistance , Mice , Mice, Obese
8.
Gut Microbes ; 13(1): 1994270, 2021.
Article in English | MEDLINE | ID: mdl-34812127

ABSTRACT

Reduction of A. muciniphila relative abundance in the gut microbiota is a widely accepted signature associated with obesity-related metabolic disorders. Using untargeted metabolomics profiling of fasting plasma, our study aimed at identifying metabolic signatures associated with beneficial properties of alive and pasteurized A. muciniphila when administrated to a cohort of insulin-resistant individuals with metabolic syndrome. Our data highlighted either shared or specific alterations in the metabolome according to the form of A. muciniphila administered with respect to a control group. Common responses encompassed modulation of amino acid metabolism, characterized by reduced levels of arginine and alanine, alongside several intermediates of tyrosine, phenylalanine, tryptophan, and glutathione metabolism. The global increase in levels of acylcarnitines together with specific modulation of acetoacetate also suggested induction of ketogenesis through enhanced ß-oxidation. Moreover, our data pinpointed some metabolites of interest considering their emergence as substantial compounds pertaining to health and diseases in the more recent literature.


Subject(s)
Metabolic Syndrome/diet therapy , Metabolome/drug effects , Probiotics/pharmacology , Adolescent , Adult , Aged , Akkermansia/physiology , Amino Acids/metabolism , Carnitine/analogs & derivatives , Carnitine/metabolism , Glycolysis/drug effects , Humans , Insulin Resistance , Ketone Bodies/metabolism , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Metabolic Syndrome/blood , Middle Aged , Probiotics/administration & dosage , Young Adult
9.
Cells ; 10(1)2021 01 19.
Article in English | MEDLINE | ID: mdl-33477821

ABSTRACT

Akkermansia muciniphila is considered as one of the next-generation beneficial bacteria in the context of obesity and associated metabolic disorders. Although a first proof-of-concept of its beneficial effects has been established in the context of metabolic syndrome in humans, mechanisms are not yet fully understood. This study aimed at deciphering whether the bacterium exerts its beneficial properties through the modulation of the endocannabinoidome (eCBome). Circulating levels of 25 endogenous endocannabinoid-related lipids were quantified by liquid chromatography with tandem mass spectrometry (LC-MS/MS) in the plasma of overweight or obese individuals before and after a 3 months intervention consisting of the daily ingestion of either alive or pasteurized A. muciniphila. Results from multivariate analyses suggested that the beneficial effects of A. muciniphila were not linked to an overall modification of the eCBome. However, subsequent univariate analysis showed that the decrease in 1-Palmitoyl-glycerol (1-PG) and 2-Palmitoyl-glycerol (2-PG), two eCBome lipids, observed in the placebo group was significantly counteracted by the alive bacterium, and to a lower extent by the pasteurized form. We also discovered that 1- and 2-PG are endogenous activators of peroxisome proliferator-activated receptor alpha (PPARα). We hypothesize that PPARα activation by mono-palmitoyl-glycerols may underlie part of the beneficial metabolic effects induced by A. muciniphila in human metabolic syndrome.


Subject(s)
Endocannabinoids/blood , Metabolic Syndrome , Monoglycerides/blood , Obesity , PPAR alpha , Adult , Akkermansia , Animals , COS Cells , Chlorocebus aethiops , Female , Humans , Male , Metabolic Syndrome/blood , Metabolic Syndrome/therapy , Obesity/blood , Obesity/therapy , PPAR alpha/agonists , PPAR alpha/metabolism
10.
J Appl Toxicol ; 41(2): 276-290, 2021 02.
Article in English | MEDLINE | ID: mdl-32725676

ABSTRACT

Gut microorganisms are vital for many aspects of human health, and the commensal bacterium Akkermansia muciniphila has repeatedly been identified as a key component of intestinal microbiota. Reductions in A. muciniphila abundance are associated with increased prevalence of metabolic disorders such as obesity and type 2 diabetes. It was recently discovered that administration of A. muciniphila has beneficial effects and that these are not diminished, but rather enhanced after pasteurization. Pasteurized A. muciniphila is proposed for use as a food ingredient, and was therefore subjected to a nonclinical safety assessment, comprising genotoxicity assays (bacterial reverse mutation and in vitro mammalian cell micronucleus tests) and a 90-day toxicity study. For the latter, Han Wistar rats were administered with the vehicle or pasteurized A. muciniphila at doses of 75, 375 or 1500 mg/kg body weight/day (equivalent to 4.8 × 109 , 2.4 × 1010 , or 9.6 × 1010 A. muciniphila cells/kg body weight/day) by oral gavage for 90 consecutive days. The study assessed potential effects on clinical observations (including detailed arena observations and a modified Irwin test), body weight, food and water consumption, clinical pathology, organ weights, and macroscopic and microscopic pathology. The results of both in vitro genotoxicity studies were negative. No test item-related adverse effects were observed in the 90-day study; therefore, 1500 mg/kg body weight/day (the highest dose tested, equivalent to 9.6 × 1010 A. muciniphila cells/kg body weight/day) was established as the no-observed-adverse-effect-level. These results support that pasteurized A. muciniphila is safe for use as a food ingredient.


Subject(s)
Akkermansia/growth & development , Akkermansia/radiation effects , Dietary Supplements/toxicity , Food Safety , Gastrointestinal Microbiome/radiation effects , Pasteurization , Animals , Humans , Male , Models, Animal , Rats , Rats, Wistar
11.
Nutrients ; 12(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187208

ABSTRACT

Maternal n-6 polyunsaturated fatty acids (PUFA) consumption during gestation and lactation can predispose offspring to the development of metabolic diseases such as obesity later in life. However, the mechanisms underlying the potential programming effect of n-6 PUFA upon offspring physiology are not yet all established. Herein, we investigated the effects of maternal and weaning linoleic acid (LA)-rich diet interactions on gut intestinal and adipose tissue physiology in young (3-month-old) and older (6-month-old) adult offspring. Pregnant rats were fed a control diet (2% LA) or an LA-rich diet (12% LA) during gestation and lactation. At weaning, offspring were either maintained on the maternal diet or fed the other diet for 3 or 6 months. At 3 months of age, the maternal LA-diet favored low-grade inflammation and greater adiposity, while at 6 months of age, offspring intestinal barrier function, adipose tissue physiology and hepatic conjugated linoleic acids were strongly influenced by the weaning diet. The maternal LA-diet impacted offspring cecal microbiota diversity and composition at 3 months of age, but had only few remnant effects upon cecal microbiota composition at 6 months of age. Our study suggests that perinatal exposure to high LA levels induces a differential metabolic response to weaning diet exposure in adult life. This programming effect of a maternal LA-diet may be related to the alteration of offspring gut microbiota.


Subject(s)
Adipose Tissue/metabolism , Gastrointestinal Microbiome/physiology , Linoleic Acid/administration & dosage , Liver/metabolism , Weaning , Adiposity , Animals , Female , Homeostasis , Lactation , Linoleic Acids, Conjugated/metabolism , Male , Maternal Nutritional Physiological Phenomena , Rats
12.
Front Microbiol ; 10: 1809, 2019.
Article in English | MEDLINE | ID: mdl-31440225

ABSTRACT

Obesity has been recognized by the World Health Organization as a global epidemic. The gut microbiota is considered as a factor involved in the regulation of numerous metabolic pathways by impacting several functions of the host. It has been suggested that probiotics can modulate host gene expression and metabolism, and thereby positively influence host adipose tissue development and obesity related-metabolic disorders. The aim of the present work was to evaluate the effect of an exopolysaccharide (EPS)-producing Bifidobacterium strain on host glucose and lipid metabolism and the gut microbial composition in a short-term diet-induced obesity (DIO) in mice. C57BL/6J male mice were randomly divided into three groups: a control group that received control standard diet, a group fed a high-fat diet (HF), and a group fed HF supplemented with Bifidobacterium animalis IPLA R1. Fasting serum insulin as well as triglycerides accumulation in the liver were significantly reduced in the group receiving B. animalis IPLA R1. The treatment with the EPS-producing B. animalis IPLA R1 tended to down-regulate the expression of host genes involved in the hepatic synthesis of fatty acids which was concomitant with an upregulation in the expression of genes related with fatty acid oxidation. B. animalis IPLA R1 not only promoted the increase of Bifidobacterium but also the levels of Bacteroides-Prevotella. Our data indicate that the EPS-producing Bifidobacterium IPLA R1 strain may have beneficial effects in metabolic disorders associated with obesity, by modulating the gut microbiota composition and promoting changes in lipids metabolism and glucose homeostasis.

13.
Nat Med ; 25(7): 1096-1103, 2019 07.
Article in English | MEDLINE | ID: mdl-31263284

ABSTRACT

Metabolic syndrome is characterized by a constellation of comorbidities that predispose individuals to an increased risk of developing cardiovascular pathologies as well as type 2 diabetes mellitus1. The gut microbiota is a new key contributor involved in the onset of obesity-related disorders2. In humans, studies have provided evidence for a negative correlation between Akkermansia muciniphila abundance and overweight, obesity, untreated type 2 diabetes mellitus or hypertension3-8. Since the administration of A. muciniphila has never been investigated in humans, we conducted a randomized, double-blind, placebo-controlled pilot study in overweight/obese insulin-resistant volunteers; 40 were enrolled and 32 completed the trial. The primary end points were safety, tolerability and metabolic parameters (that is, insulin resistance, circulating lipids, visceral adiposity and body mass). Secondary outcomes were gut barrier function (that is, plasma lipopolysaccharides) and gut microbiota composition. In this single-center study, we demonstrated that daily oral supplementation of 1010 A. muciniphila bacteria either live or pasteurized for three months was safe and well tolerated. Compared to placebo, pasteurized A. muciniphila improved insulin sensitivity (+28.62 ± 7.02%, P = 0.002), and reduced insulinemia (-34.08 ± 7.12%, P = 0.006) and plasma total cholesterol (-8.68 ± 2.38%, P = 0.02). Pasteurized A. muciniphila supplementation slightly decreased body weight (-2.27 ± 0.92 kg, P = 0.091) compared to the placebo group, and fat mass (-1.37 ± 0.82 kg, P = 0.092) and hip circumference (-2.63 ± 1.14 cm, P = 0.091) compared to baseline. After three months of supplementation, A. muciniphila reduced the levels of the relevant blood markers for liver dysfunction and inflammation while the overall gut microbiome structure was unaffected. In conclusion, this proof-of-concept study (clinical trial no. NCT02637115 ) shows that the intervention was safe and well tolerated and that supplementation with A. muciniphila improves several metabolic parameters.


Subject(s)
Dietary Supplements , Obesity/diet therapy , Overweight/diet therapy , Verrucomicrobia , Adult , Aged , Double-Blind Method , Feces/microbiology , Gastrointestinal Microbiome , Humans , Insulin Resistance , Middle Aged , Obesity/metabolism , Obesity/microbiology , Overweight/metabolism , Overweight/microbiology , Pilot Projects
14.
Nat Commun ; 10(1): 457, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30692526

ABSTRACT

Variations in N-acylethanolamines (NAE) levels are associated with obesity and metabolic comorbidities. Their role in the gut remains unclear. Therefore, we generated a mouse model of inducible intestinal epithelial cell (IEC)-specific deletion of N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD), a key enzyme involved in NAE biosynthesis (Napepld∆IEC). We discovered that Napepld∆IEC mice are hyperphagic upon first high-fat diet (HFD) exposure, and develop exacerbated obesity and steatosis. These mice display hypothalamic Pomc neurons dysfunctions and alterations in intestinal and plasma NAE and 2-acylglycerols. After long-term HFD, Napepld∆IEC mice present reduced energy expenditure. The increased steatosis is associated with higher gut and liver lipid absorption. Napepld∆IEC mice display altered gut microbiota. Akkermansia muciniphila administration partly counteracts the IEC NAPE-PLD deletion effects. In conclusion, intestinal NAPE-PLD is a key sensor in nutritional adaptation to fat intake, gut-to-brain axis and energy homeostasis and thereby constitutes a novel target to tackle obesity and related disorders.


Subject(s)
Dietary Fats/metabolism , Fatty Liver/metabolism , Intestinal Mucosa/metabolism , Obesity/metabolism , Phosphatidylethanolamines/metabolism , Phospholipase D/metabolism , Adaptation, Physiological , Animals , Diet, High-Fat/adverse effects , Fatty Liver/etiology , Gastrointestinal Microbiome/physiology , Homeostasis , Intestinal Mucosa/microbiology , Lipid Metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Obesity/etiology
15.
PLoS One ; 13(2): e0192447, 2018.
Article in English | MEDLINE | ID: mdl-29389988

ABSTRACT

SCOPE: Conjugated linoleic acids are linoleic acid isomers found in the diet that can also be produced through bacterial metabolism of polyunsaturated fatty acids. Our objective was to evaluate the contribution of fatty acid metabolites produced from polyunsaturated fatty acids by the gut microbiota in vivo to regulation of hepatic lipid metabolism and steatosis. METHODS AND RESULTS: In mice with depleted n-3 polyunsaturated fatty acids, we observed an accumulation of trans-11,trans-13 CLA and cis-9,cis-11 conjugated linoleic acids in the liver tissue that were associated with an increased triglyceride content and expression of lipogenic genes. We used an in vitro model to evaluate the impact of these two conjugated linoleic acids on hepatic lipid metabolism. In HepG2 cells, we observed that only trans-11,trans-13 conjugated linoleic acids recapitulated triglyceride accumulation and increased lipogenic gene expression, which is a phenomenon that may implicate the nuclear factors sterol regulatory element binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP). CONCLUSION: The trans-11,trans-13 conjugated linoleic acids can stimulate hepatic lipogenesis, which supports the conclusion that gut microbiota and related metabolites should be considered in the treatment of non-alcoholic liver disease.


Subject(s)
Fatty Liver/chemically induced , Linoleic Acids, Conjugated/pharmacology , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Nuclear Proteins/physiology , Sterol Regulatory Element Binding Protein 1/physiology , Transcription Factors/physiology
16.
Am J Physiol Endocrinol Metab ; 314(4): E334-E352, 2018 04 01.
Article in English | MEDLINE | ID: mdl-28874357

ABSTRACT

Increasing evidence suggests that polyphenols have a significant potential in the prevention and treatment of risk factors associated with metabolic syndrome. The objective of this study was to assess the metabolic outcomes of two polyphenol-containing extracts from cinnamon bark (CBE) and grape pomace (GPE) on C57BL/6J mice fed a high-fat diet (HFD) for 8 wk. Both CBE and GPE were able to decrease fat mass gain and adipose tissue inflammation in mice fed a HFD without reducing food intake. This was associated with reduced liver steatosis and lower plasma nonesterified fatty acid levels. We also observed a beneficial effect on glucose homeostasis, as evidenced by an improved glucose tolerance and a lower insulin resistance index. These ameliorations of the overall metabolic profile were associated with a significant impact on the microbial composition, which was more profound for the GPE than for the CBE. At the genus level, Peptococcus were decreased in the CBE group. In the GPE-treated group, several key genera that have been previously found to be linked with HFD, metabolic effects, and gut barrier integrity were affected: we observed a decrease of Desulfovibrio, Lactococcus, whereas Allobaculum and Roseburia were increased. In addition, the expression of several antimicrobial peptides and tight junction proteins was increased in response to both CBE and GPE supplementation, indicating an improvement of the gut barrier function. Collectively, these data suggest that CBE and GPE can ameliorate the overall metabolic profile of mice on a high-fat diet, partly by acting on the gut microbiota.


Subject(s)
Cinnamomum zeylanicum/chemistry , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Metabolic Diseases/prevention & control , Plant Extracts/pharmacology , Vitis/chemistry , Animals , Biomarkers/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/microbiology , Diabetes Mellitus, Experimental/prevention & control , Diet, High-Fat/adverse effects , Fatty Liver/metabolism , Fatty Liver/microbiology , Fatty Liver/prevention & control , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Metabolic Diseases/microbiology , Mice , Mice, Inbred C57BL , Obesity/metabolism , Obesity/microbiology , Obesity/prevention & control , Permeability , Plant Extracts/therapeutic use
17.
Gut ; 66(4): 620-632, 2017 04.
Article in English | MEDLINE | ID: mdl-27196572

ABSTRACT

OBJECTIVE: To examine the role of hepatocyte myeloid differentiation primary-response gene 88 (MyD88) on glucose and lipid metabolism. DESIGN: To study the impact of the innate immune system at the level of the hepatocyte and metabolism, we generated mice harbouring hepatocyte-specific deletion of MyD88. We investigated the impact of the deletion on metabolism by feeding mice with a normal control diet or a high-fat diet for 8 weeks. We evaluated body weight, fat mass gain (using time-domain nuclear magnetic resonance), glucose metabolism and energy homeostasis (using metabolic chambers). We performed microarrays and quantitative PCRs in the liver. In addition, we investigated the gut microbiota composition, bile acid profile and both liver and plasma metabolome. We analysed the expression pattern of genes in the liver of obese humans developing non-alcoholic steatohepatitis (NASH). RESULTS: Hepatocyte-specific deletion of MyD88 predisposes to glucose intolerance, inflammation and hepatic insulin resistance independently of body weight and adiposity. These phenotypic differences were partially attributed to differences in gene expression, transcriptional factor activity (ie, peroxisome proliferator activator receptor-α, farnesoid X receptor (FXR), liver X receptors and STAT3) and bile acid profiles involved in glucose, lipid metabolism and inflammation. In addition to these alterations, the genetic deletion of MyD88 in hepatocytes changes the gut microbiota composition and their metabolomes, resembling those observed during diet-induced obesity. Finally, obese humans with NASH displayed a decreased expression of different cytochromes P450 involved in bioactive lipid synthesis. CONCLUSIONS: Our study identifies a new link between innate immunity and hepatic synthesis of bile acids and bioactive lipids. This dialogue appears to be involved in the susceptibility to alterations associated with obesity such as type 2 diabetes and NASH, both in mice and humans.


Subject(s)
Bile Acids and Salts/metabolism , Gastrointestinal Microbiome/genetics , Glucose/metabolism , Hepatocytes/metabolism , Lipid Metabolism/genetics , Metabolome/genetics , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Adiposity , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Body Weight , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Diet, High-Fat , Gene Expression , Humans , Immunity, Innate/genetics , Insulin Resistance/genetics , Liver/metabolism , Liver X Receptors/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/immunology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/genetics , Obesity/metabolism , PPAR alpha/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , STAT3 Transcription Factor/metabolism
18.
Nat Med ; 23(1): 107-113, 2017 01.
Article in English | MEDLINE | ID: mdl-27892954

ABSTRACT

Obesity and type 2 diabetes are associated with low-grade inflammation and specific changes in gut microbiota composition. We previously demonstrated that administration of Akkermansia muciniphila to mice prevents the development of obesity and associated complications. However, the underlying mechanisms of this protective effect remain unclear. Moreover, the sensitivity of A. muciniphila to oxygen and the presence of animal-derived compounds in its growth medium currently limit the development of translational approaches for human medicine. We have addressed these issues here by showing that A. muciniphila retains its efficacy when grown on a synthetic medium compatible with human administration. Unexpectedly, we discovered that pasteurization of A. muciniphila enhanced its capacity to reduce fat mass development, insulin resistance and dyslipidemia in mice. These improvements were notably associated with a modulation of the host urinary metabolomics profile and intestinal energy absorption. We demonstrated that Amuc_1100, a specific protein isolated from the outer membrane of A. muciniphila, interacts with Toll-like receptor 2, is stable at temperatures used for pasteurization, improves the gut barrier and partly recapitulates the beneficial effects of the bacterium. Finally, we showed that administration of live or pasteurized A. muciniphila grown on the synthetic medium is safe in humans. These findings provide support for the use of different preparations of A. muciniphila as therapeutic options to target human obesity and associated disorders.


Subject(s)
Adipose Tissue/drug effects , Blood Glucose/drug effects , Diabetes Mellitus, Type 2/metabolism , Dyslipidemias/metabolism , Membrane Proteins/pharmacology , Obesity/metabolism , Toll-Like Receptor 2/drug effects , Verrucomicrobia , Adult , Animals , Blood Glucose/metabolism , Blotting, Western , Chromatography, Liquid , Disease Models, Animal , Female , Humans , Insulin Resistance , Intestinal Mucosa/metabolism , Intestines/drug effects , Male , Metabolic Syndrome/metabolism , Mice, Obese , Middle Aged , Toll-Like Receptor 2/metabolism
19.
FASEB J ; 30(1): 241-51, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26362817

ABSTRACT

In mice, nutritional supplementation with the trans-10,cis-12 isomer of linoleic acid (t10,c12-CLA) promotes lipoatrophy, hyperinsulinemia, and macrophage infiltration in white adipose tissue (WAT). We explored the dynamics of these interrelated responses over 2 consecutive 7 d periods of t10,c12-CLA administration and withdrawal. t10,c12-CLA down-regulated lipogenic and lipolytic gene expression and increased collagen deposition, but with no evidence of cross-linking. An abundant CD45(+) cell infiltrate, comprising prominently CD206(+)CD11c(-) macrophages, was found in WAT in association with an anti-inflammatory gene signature. Infiltration of natural killer (NK) and dendritic cells contributed to WAT's innate immune response to t10,c12-CLA. Less abundant adaptive immune cells colonized WAT, including B, NK T, γδ T, and αß T cells. By contrast, T-regulatory cell abundance was not affected. Interruption of treatment allowed recovery of WAT mass and normalization of insulinemia, coincident with regain of WAT homeostasis owing to a coordinated reversion of genic, structural, and immune deregulations. These data revealed a striking resilience of WAT after a short-term metabolic injury induced by t10,c12-CLA, which relies on alternatively activated M2 macrophage engagement. In addition, the temporal links between variations in WAT alterations and insulinemia upon t10,c12-CLA manipulation strengthen the view that WAT dysfunctional status is critically involved in altered glucose homeostasis.


Subject(s)
Adipose Tissue, White/drug effects , Linoleic Acids, Conjugated/pharmacology , Macrophage Activation , Macrophages/drug effects , Adaptation, Physiological , Adipose Tissue, White/cytology , Animals , Cells, Cultured , Female , Macrophages/immunology , Mice , Mice, Inbred C57BL , T-Lymphocytes/drug effects
20.
Nat Rev Endocrinol ; 12(3): 133-43, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26678807

ABSTRACT

Various metabolic disorders are associated with changes in inflammatory tone. Among the latest advances in the metabolism field, the discovery that gut microorganisms have a major role in host metabolism has revealed the possibility of a plethora of associations between gut bacteria and numerous diseases. However, to date, few mechanisms have been clearly established. Accumulating evidence indicates that the endocannabinoid system and related bioactive lipids strongly contribute to several physiological processes and are a characteristic of obesity, type 2 diabetes mellitus and inflammation. In this Review, we briefly define the gut microbiota as well as the endocannabinoid system and associated bioactive lipids. We discuss existing literature regarding interactions between gut microorganisms and the endocannabinoid system, focusing specifically on the triad of adipose tissue, gut bacteria and the endocannabinoid system in the context of obesity and the development of fat mass. We highlight gut-barrier function by discussing the role of specific factors considered to be putative 'gate keepers' or 'gate openers', and their role in the gut microbiota-endocannabinoid system axis. Finally, we briefly discuss data related to the different pharmacological strategies currently used to target the endocannabinoid system, in the context of cardiometabolic disorders and intestinal inflammation.


Subject(s)
Endocannabinoids/metabolism , Endocannabinoids/physiology , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Animals , Gastrointestinal Microbiome/drug effects , Gastrointestinal Tract/drug effects , Humans , Receptors, Cannabinoid/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...