Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 29(Pt 2): 409-423, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35254304

ABSTRACT

Penetrating, high-energy synchrotron X-rays are in strong demand, particularly for high-pressure research in physics, chemistry and geosciences, and for materials engineering research under less extreme conditions. A new high-energy wiggler beamline P61 has been constructed to meet this need at PETRA III in Hamburg, Germany. The first part of the paper offers an overview of the beamline front-end components and beam characteristics. The second part describes the performance of the instrumentation and the latest developments at the P61B endstation. Particular attention is given to the unprecedented high-energy photon flux delivered by the ten wigglers of the PETRA III storage ring and the challenges faced in harnessing this amount of flux and heat load in the beam. Furthermore, the distinctiveness of the world's first six-ram Hall-type large-volume press, Aster-15, at a synchrotron facility is described for research with synchrotron X-rays. Additionally, detection schemes, experimental strategies and preliminary data acquired using energy-dispersive X-ray diffraction and radiography techniques are presented.

2.
Chemphyschem ; 16(5): 1083-91, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25703923

ABSTRACT

Three different methods to determine the oxide-phase concentration in mixed cerium oxide by hard X-ray photoelectron spectroscopy are applied and quantitatively compared. Synchrotron-based characterization of the O 1s region was used as a benchmark to introduce a method based on the weighted superposition of the Ce 3d spectra of the pure Ce(3+) and Ce(4+) phases, which was shown to lead to reliable and highly accurate determination of the mean oxidation state in mixed cerium oxides. The results obtained reveal a linear relation between the third distinct final state (u''') satellite peak intensity of the Ce(4+) phase and the Ce(4+) concentration by proper inclusion of Ce(3+)-related plasmon satellite peaks, which contradicts previous claims of nonlinear behavior. In contrast, quantitative conventional peak-fitting procedures were shown to be well suited for the Ce 2p region due to its relatively simple structure. Additional satellite features observed in the Ce 3d spectrum of CeO2 were proposed to originate from plasmon contributions.

3.
ACS Nano ; 4(3): 1680-6, 2010 Mar 23.
Article in English | MEDLINE | ID: mdl-20166724

ABSTRACT

X-ray photoelectron spectroscopy at 3.5 keV photon energy, in combination with high-resolution transmission electron microscopy, is used to follow the formation of the interface between rhodium and carbon nanotubes. Rh nucleates at defect sites, whether initially present or induced by oxygen-plasma treatment. More uniform Rh cluster dispersion is observed on plasma-treated CNTs. Experimental results are compared to DFT calculations of small Rh clusters on pristine and defective graphene. While Rh interacts as strongly with the carbon as Ti, it is less sensitive to the presence of oxygen, suggesting it as a good candidate for nanotube contacts.

4.
Chemphyschem ; 10(11): 1799-804, 2009 Aug 03.
Article in English | MEDLINE | ID: mdl-19472267

ABSTRACT

We study the interface between carbon nanotubes (CNTs) and surface-deposited titanium using electron microscopy and photoemission spectroscopy, supported by density functional calculations. Charge transfer from the Ti atoms to the nanotube and carbide formation is observed at the interface which indicates strong interaction. Nevertheless, the presence of oxygen between the Ti and the CNTs significantly weakens the Ti-CNT interaction. Ti atoms at the surface will preferentially bond to oxygenated sites. Potential sources of oxygen impurities are examined, namely oxygen from any residual atmosphere and pre-existing oxygen impurities on the nanotube surface, which we enhance through oxygen plasma surface pre-treatment. Variation in literature data concerning Ohmic contacts between Ti and carbon nanotubes is explained via sample pre-treatment and differing vacuum levels, and we suggest improved treatment routes for reliable Schottky barrier-free Ti-nanotube contact formation.

5.
Micron ; 40(1): 85-8, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18291661

ABSTRACT

In this study of the changes induced by exposing MWCNTs to a nitrogen plasma, it was found by HRTEM that the atomic nitrogen exposure does not significantly etch the surface of the carbon nanotube (CNT). Nevertheless, the atomic nitrogen generated by a microwave plasma effectively grafts amine, nitrile, amide, and oxime groups onto the CNT surface, as observed by XPS, altering the density of valence electronic states, as seen in UPS.

SELECTION OF CITATIONS
SEARCH DETAIL
...